Name:

**Enrolment No:** 



**Semester: VII** 

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

**Course: Reservoir Modeling & Simulation** 

Program: B. Tech. APE UP

Course Code: PEAU 4002

Time : 03 hrs.

Max. Marks: 100

## **Instructions:**

|                 | SECTION A                                                                                                                                                                                                                                                                                                      |       |     |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| (5Qx4M=20Marks) |                                                                                                                                                                                                                                                                                                                |       |     |  |
| S. No.          |                                                                                                                                                                                                                                                                                                                | Marks | СО  |  |
| Q 1             | Define Reservoir simulation. Explain the different steps in a typical reservoir simulation study.                                                                                                                                                                                                              | 4     | CO1 |  |
| Q 2             | State physical model, mathematical model, numerical and computer model.                                                                                                                                                                                                                                        | 4     | CO1 |  |
| Q 3             | Write down short notes on transmissibility, wettability, bubble point pressure and aquifer with suitable diagram.                                                                                                                                                                                              | 4     | CO2 |  |
| Q 4             | Explain volumetric method. Write down the equations of initial oil and gas in place by volumetric method.                                                                                                                                                                                                      | 4     | CO2 |  |
| Q 5             | Explain the forces that makes fluids move in the porous media in detail Describe Partial differential equation and 1 D linear diffusivity equation with suitable figure.                                                                                                                                       | 4     | CO3 |  |
|                 | SECTION B                                                                                                                                                                                                                                                                                                      |       |     |  |
|                 | (4Qx10M = 40 Marks)                                                                                                                                                                                                                                                                                            |       |     |  |
| Q 6             | Illustrate capillary pressure-drainage vs imbibition, hysteresis curves.  Describe capillary pressure, relative permeability and wettability relationships with suitable diagram.                                                                                                                              | 10    | CO2 |  |
| Q 7             | a. Explain upscaling basics. Illustrate different methods of upscaling.  (Marks 5)  b.Describe model initialization during simulation. Write down the techniques of Initialization  (Marks 5)                                                                                                                  | 10    | CO3 |  |
| Q 8             | <ul> <li>a. Explain iterative process, Implicit Pressure-Explicit-Saturation and Implicit Pressure-Implicit-Saturation in simulation. (Marks 5)</li> <li>b. Discuss Discretization process during reservoir simulation. State the criteria for grid select in reservoir simulation model. (Marks 5)</li> </ul> | 10    | CO4 |  |
| Q 9             | Describe the different deliverables for construction of Geo-cellular model in Petrel. Write down the Output and Input Files in Black Oil IMEX Simulator of CMG.  OR                                                                                                                                            | 10    | CO6 |  |

|                   | Write down the different keywords (in detail) used in Eclipse for          |    |     |  |
|-------------------|----------------------------------------------------------------------------|----|-----|--|
|                   | RUNSPEC, GRID, EDIT, PROPS, REGIONS, SOLUTIONS,                            |    |     |  |
|                   | SUMMARY, and SHEDULE Sections. Set 10 cells to have length of 500          |    |     |  |
|                   | feet using DX keyword in Eclipse                                           |    |     |  |
| SECTION-C         |                                                                            |    |     |  |
| (2Qx20M=40 Marks) |                                                                            |    |     |  |
| Q 10              | a. Discuss the assumptions, limitations and advantages of Material         |    |     |  |
|                   | Balance Equation. Describe Discuss Released Gas Volume,                    |    |     |  |
|                   | Remaining Oil Volume Rock and Connate water expansion volume in            |    |     |  |
|                   | Material Balance equation. (10 Marks)                                      |    |     |  |
|                   | b. Given a reservoir with all blocks having the following properties       |    |     |  |
|                   | DELX = 50 feet                                                             |    |     |  |
|                   | DELY = 1500 feet                                                           |    |     |  |
|                   | DELZ = 15 feet                                                             |    |     |  |
|                   | POROSITY = 15 PERCENT                                                      | 20 | CO2 |  |
|                   | PERMX = 200 MD                                                             |    |     |  |
|                   | PERMY = 3  times  PERMX                                                    |    |     |  |
|                   | Kz/Kx ratio = 10 percent                                                   |    |     |  |
|                   | NET-TO-GROSS RATIO = 0.5                                                   |    |     |  |
|                   | 1. Calculate the bulk rock volume and pore volume of the grid block.       |    |     |  |
|                   | 2. Determine transmissibility in the X, Y and Z directions. (5 Marks)      |    |     |  |
|                   | , (                                                                        |    |     |  |
|                   | c. Illustrate different types of reserves through flow diagram.(5 Marks)   |    |     |  |
|                   |                                                                            |    |     |  |
| Q 11              | Discuss the various criteria for selecting the prediction cases. Describe  |    |     |  |
|                   | the various Input data and output during prediction performances. Apply    |    |     |  |
|                   | the prediction case studies of sandstone reservoir for any Indian Field.   |    |     |  |
|                   |                                                                            | 20 | COS |  |
|                   | OR                                                                         | 20 | CO5 |  |
|                   | Describe iterative procedures for a history match as well as general       |    |     |  |
|                   | algorithm for manual history matching along with key reservoir data and    |    |     |  |
|                   | additional history matching tools. Discuss uncertainties in history match. |    |     |  |
|                   | ,                                                                          |    |     |  |