T T	r	
	ame	
Τ.4	ame	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Microbial physiology and metabolism Program: Int.B.Sc.-MSc. Microbiology

Course Code: HSMB 2006

Semester: III Duration: 03 hrs. Max. Marks: 100

Instructions:

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q1	Passive Transport occurs	1.5	CO1
	a. Along the concentration gradient		
	b. Without the use of metabolic end product		
	c. Both		
	d. None		
Q2	Nitrifying bacteria are:	1.5	CO2
	a) Chemoheterotroph		
	b) Chemoautotroph		
	c) Photoheterotroph		
	d) Photolithotroph		
Q3	The organism which grows best above 45°C called	1.5	CO2
Q4	The conversion of nitrogen to nitrogenous compound is	1.5	CO2
	called as		
	a. Nitrogen assimilation		
	b. Denitrification		
	c. Nitrogen fixation		
	d. Nitrification		
Q5	The type of fermentation observed in yeasts is	1.5	CO3
	a. acrylic fermentation		
	b. lactic acid fermentation		
	c. pyruvic fermentation		
	d. alcoholic fermentation		
Q6	A food container was forgotten in the refrigerator and shows	1.5	CO2
	contamination. The contaminants are probably		
	a. psychrotrophs		
	b. mesophiles		
	c. thermophiles		

	d. acido	pphiles		
Q7	or channel for transparents a. seconds. facility c. simple d. prim	ndary active transport itated diffusion le diffusion ary active transport	1.5	CO2
Q8	a. simple diffusion	1. Movement via a membrane protein	1.5	CO2
	b. secondary active transport	2. Energy from hydrolysis of ATP		
	c. primary active transport d. facilitated diffusion	Stored energy from ionic gradient Movement without a membrane protein		
Q9	b. The the n	process of transporting and transforming nolecules at the same time process of transporting and transforming nolecules one at a time process of transporting and transforming nolecules randomly	1.5	CO2
Q10	A group translocation the uptake of sugar a. Phose b. Twir c. Phose	photransferase system n-arginine translocation pathway photransferase system and Twin-arginine location pathway	1.5	CO2
Q11	The concept of cher a. Paste b. Beije c. Petri d. Wine	nolithotrophy was first proposed by eur erinck ogradsky	1.5	CO1
Q12	in prokaryotes, whi	ch of the following is true?	1.5	CO3

	a. As electrons are transferred through an ETS	,	
	H+ is pumped out of the cell.		
	b. As electrons are transferred through an ETS	,	
	H+ is pumped into the cell.		
	c. As protons are transferred through an ETS	,	
	electrons are pumped out of the cell.		
	d. As protons are transferred through an ETS	,	
	electrons are pumped into the cell.		
Q13	Transport proteins that move substrates in opposite	1.5	CO2
	directions across the cell membrane are		
	a. uniporters		
	b. symporters		
	c. antiporters		
	d. xenoporters		
0.1.1			~~
Q14	In prokaryotes, which of the following is true?	1.5	СО
	I. As electrons are transferred through an ETS, H+ is	8	
	pumped out of the cell.		
	II. As electrons are transferred through an ETS, H+ is	S	
	pumped into the cell.		
	III. As protons are transferred through an ETS	,	
	electrons are pumped out of the cell.		
	IV. As protons are transferred through an ETS	,	
	electrons are pumped into the cell.		
Q15	Which of the following is not an electron carrier within an	1.5	CO4
Q13	electron transport system?	1.5	CO4
	b. ATP synthase		
	c. ubiquinone		
	d. cytochrome oxidase		

Q16	Which of the following does not occur during cyclic	1.5	CO4
	photophosphorylation in cyanobacteria?		
	a. electron transport through an ETS		
	b. photosystem I use		
	c. ATP synthesis		
	d. NADPH formation		
Q17	The enzyme responsible for CO2 fixation during the Calvin	1.5	CO4
Q17		1.3	004
	cycle is called		
Q18	Name one ETC uncoupling agent.	1.5	CO4
Q19	Algae are	1.5	CO4
	a) Photoautothroph		
	b) Pholithotrophc) Chemoautotroph		
	d) Chemoheterotroph		
Q20	*	1.5	CO4
	In the passive diffusion, solute molecules cross the membrane as a result of		
	(i) Concentration difference		
	(ii) pressure difference' (iii) all of these		
	(iv) ionic difference		
	, <u>I</u>		
	Section B (4Qx5M=20 Marks)		
Ο1	What is a multi-anaryma complay? Cita an ayampla and	5	
Q1	What is a multi-enzyme complex? Cite an example and explain how it operates?	5	CO1
Q2	What is the difference between cyclic and non-cyclic	5	CO2
	phosphorylation and where are they observed?		CO3
Q3	How does oxygen affect microbial growth? Characterize	5	CO2
0.4	microbes based on their growth on oxygen tension.		
Q4	Distinguish between how chemiosmotic potential is generated in bacteria (<i>E. coli</i>) versus mammals.	5	CO2
	Section C		
	(2Qx15M=30 Marks)		
Q1	Yeast were shifted from oxygenic atmosphere to	15	
	anoxygenic atmosphere and glucose consumption increased		
	massively. Based on this answer the following questions: (i) What is this phenomenon called? Who discovered		
	(i) What is this phenomenon called? Who discovered it? (2)		
	(ii) What is the science behind this phenomenon? (2)		CO2

	(iii) Is this reaction/fermentation seen in bacteria also? I		
	yes; please distinguish between yeast and bacteria		
	pathway with name of yeast and name of bacteri	a	
	involved. (5)		
	(iv) Differentiate between linear and branched	d	
	fermentation pathways with example. (2)		
	(v) Differentiate between homolactate and heterolactate	e	
	fermentation. (4)		
Q2	This reaction chemically happens at very high temperature		
	and pressures. But, extract of a legume also showed		
	somewhat similar activity with some production of H ₂ wa	S	
	detected. Based on this answer the following:		
	(i) Which reaction is being referred to and which	1	
	microbes perform it? (2)		
	(ii) Write the equation for the reaction. (1)		
	(iii) Write the process with suitable illustrations as to		
	what happens in legume? (6)		
	(iv) Does similar reaction happen in cyanobacteria? If so		
	where; write a note and make suitable		
	flowchart/illustration to express your answer. (5)		
	(v) Why is H_2 released? (1)		
			CO3
	Section D		
	(2Qx10M=20 Marks)		
Q1	'TCA cycle is both amphibolic.' Comment on the statemen	t 10	CO3
	with flow charts with view of bacteria especially aerobes and	d	
	anaerobes.		
	OR		
	Explain photosynthesis with flowcharts and examples of	f	
	microbes where it happens.		
Q2	What is group translocation? Why do bacteria prefer group	0 10	CO2
	translocation over simple diffusion?		
	•		