Name: Enrolment No: Semester **Duration** Max. Marks: 100 : 2nd : 3 Hrs ## **End Semester Examination – May, 2022** Program/course: MBA (Power Management) Subject: Solar Power Development and Management **Code: PIPM 7005** No. of page/s: 2 | | SECTION A | | [10*2 Marks = 20 Marks] | | |-----------|---|---------------------------|-------------------------|--| | Ques 1 | Briefly explain the following: a) GHI b) DNI c) DHI d) Solar Constant e) CUF f) Pyranometer g) Concentrated Solar Power h) Auxiliary Power Consumption i) Solar Park j) National Solar Mission | 20 | CO1 | | | SECTION B | | [6*5 Marks =
30 Marks] | | | | Ques 2 | State True or False for the following statements and justify your stand. All the questions in this section carry 5 marks each, out of which, 1 mark is for correctly stating True or False and 4 marks for justification. a) Operation and maintenance is easy for all types of solar power projects. b) Grid power is essential for the export of power from solar PV power plant to the grid. c) Concentrating solar power plants don't have large scale water requirements. d) CUF of solar thermal power plants is generally higher than that of solar PV power plants. e) Concentrating solar collector can utilize all types of solar radiation. f) The maximum output of solar PV panel remains constant throughout its useful life. | 30 | CO2 | | | SECTION C Answer any three questions from this section. | | [3*10 Marks =
30 Marks] | | | |--|--|----------------------------|----------------------------|--| | Ques 3 | Discuss the challenges and opportunities associated with solar power in India. | 10 | CO3 | | | Ques 4 | During last few years, solar power tariffs have been consistently falling in India. Discuss three main reasons for such a trend. | 10 | CO3 | | | Ques 5 | In the estimation of solar power tariff, principal component of loan and equity component is not included directly but it is indirectly accounted in the tariff. Justify. | 10 | CO3 | | | Ques 6 | In India, there has been large scale capacity addition of solar PV but very little installation of solar thermal power plant. Explain the reasons. | 10 | CO3 | | | SECTION D Answer any one question from this section. | | | [1*20 Marks = 20
Marks] | | | Ques 7 | As an advisor to Government of India on Renewable Energy, suggest four policy initiatives for accelerated development of solar power industry in India. | 20 | CO3 | | | Ques 8 | Explain the working of a solar PV power plant with the help of a block diagram indicating PV arrays, Power-conditioning units (inverters), MCBs, Transformers, LT Panels, HT Panels, HT metering cubicle and Grid. | 20 | CO3 | |