N	a	m	e:
---	---	---	----

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Overview of Data Mining Semester: II

Program: MBA BA

Course Code: DSBA 7011

Max. Marks: 100

Instructions:

SECTION A						
S. No.	10Qx2M=20Marks 1. Computers are best at learning	Marks	CO1			
S. NO.	a. facts.	Maiks	COI			
	b. concepts.					
	c. procedures.					
	d. principles.					
	d. principies.					
	2. Data used to build a data mining model.					
	a. validation data					
	b. training data					
	c. test data					
	d. hidden data					
	3. Supervised learning differs from unsupervised clustering in that supervised learning requires					
	a. at least one input attribute.					
	b. input attributes to be categorical.					
	c. at least one output attribute.					
	d. output attributes to be categorical.					
	4. Which statement is true about prediction problems?					
	a. The output attribute must be categorical.					
	b. The output attribute must be numeric.					
	c. The resultant model is designed to determine future outcomes.					
	d. The resultant model is designed to classify current behavior.					
	5. Which statement about outliers is true?					
	a. Outliers should be identified and removed from a dataset.					
	b. Outliers should be part of the training dataset but should not be					
	present in the test data.					
	c. Outliers should be part of the test dataset but should not be present					
	in the training data.					
	d. The nature of the problem determines how outliers are used.					

e.	More than one of a,b,c or d is true.	
6.	Assume that we have a dataset containing information about 200	
	viduals. One hundred of these individuals have purchased life	
	rance. A supervised data mining session has discovered the	
	owing rule:	
10110	5 11 mg 2 4220	
	IF age < 30 & credit card insurance = yes	
	THEN life insurance = yes	
	Rule Accuracy: 70%	
	Rule Coverage: 63%	
Ном	w many individuals in the class life insurance= no have credit card	
	rance and are less than 30 years old?	
a.	63	
a. b.	70	
о. С.	30	
d.	27	
u.	~ '	
7.	Unlike traditional production rules, association rules	
a.	allow the same variable to be an input attribute in one rule and an	
	output attribute in	
	another rule.	
b.	allow more than one input attribute in a single rule.	
c.	require input attributes to take on numeric values.	
d.	require each rule to have exactly one categorical output attribute.	
8.	Which of the following is a common use of unsupervised	
	clustering?	
a.	detect outliers	
b.	determine a best set of input attributes for supervised learning	
c.	evaluate the likely performance of a supervised learner model	
d.	determine if meaningful relationships can be found in a dataset	
e.	All of a,b,c, and d are common uses of unsupervised clustering.	
9.	Which statement is true about the V. Moons algorithm?	
	Which statement is true about the K-Means algorithm? All attribute values must be categorical.	
a. b.	The output attribute must be categorical.	
о. С.	Attribute values may be either categorical or numeric.	
d.	All attributes must be numeric.	
u.	7 in authories must be numeric.	
10. 0	Classification rules are extracted from	
A. r	root node.	
B. c	decision tree.	
	siblings.	
D. b	pranches	

	SECTION B 4Qx5M= 20 Marks	
Q2.	Differentiate between training and test data set.	CO2
Q3.	Describe the process of evaluating J48 on any data set.	CO2
Q4.	Explain why cross validation better than repeated holdout.	CO2
Q5.	Differentiate between supervises and unsupervised learning	CO2
	SECTION-C 3Qx10M=30 Marks	
Q6.	Describe the below given diagram: Training data ML algorithm Classifier Deploy! Evaluation results	CO2
Q7.	Write the interpretation of the association rules based on the given data set: Here are some association rules for the weather data: 1. outlook = overcast	CO2
Q8.	Describe the interpretation of below given non-linear regression result:	CO2

Q9.	Tal	Table 1.5 The CPU performance								
		Cycle	Main memory (KB)		Cache	Channels				
		time (ns) MYCT	Min. MMIN	Max. MMAX	(KB) CACH	Min. CHMIN	Max. CHMAX	Performance PRP		
	1 2	125 29 29	256 8000 8000	6000 32000 32000	256 32 32	16 8	128 32 32	198 269 220		
	3 4 5	29 29 29	8000 8000	32000 32000 16000	32 32 32	8 8 8	32 32 16	172 132		G03
	207 208 209	125 480 480	2000 512 1000	8000 8000 4000	0 32 0	2 0 0	14 0 0	52 67 45		CO3
			-	ion of g	given li	near reg	ression	model bas	sed on	
		ove dat		0 100		015234	MDI	0.00563.0	MAN	
		= - 55.9 [.]						0.0056 MN	MAX	
		410 CA	CH - 0.	2700 C	HMIN	± 1.480	CHIVIA	AA.		