Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**End Semester Examination, May 2022** 

**Course: Predictive Modelling** 

Semester: IV

Program: MBA (BA) Time : 03 hrs.
Course Code: DSBA 8003 Max. Marks: 100

**Instructions: Attempt all sections** 

## SECTION A 10Qx2M=20Marks

| S. No. |                                                                                                                                                                                                             | Marks | CO  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | Attempt all multiple choice questions                                                                                                                                                                       |       | CO1 |
| a.     | The purpose of applying data reduction is  a) to generate a larger set of variables b) to remove negative values c) to use a smaller set of variables that capture maximum information d) None of the above | 2     | CO1 |
| b.     | A graph that uses vertical bars to represent data is called as  a) Line graph b) Bar graph c) Scatterplot d) Vertical graph                                                                                 | 2     | CO1 |
| c.     | Precision is a useful metric in cases where False Positive is a higher concern than False Negatives  a) True b) False                                                                                       | 2     | CO1 |
| d.     | The main benefit of standardizing a dataset is  a) it makes multiple variables of a dataset come to a common scale. b) eliminates negative data values c) makes data interpretation easier.                 | 2     | CO1 |
| e.     | What is an outlier?  a) data point most proximal to mean b) data point that falls outside the overall pattern. c) data point above or below 3 standard deviations of the mean.                              | 2     | CO2 |
| f.     | are used when you want to visually examine the relationship between two quantitative variables.  a) Bar graph b) pie graph c) line graph                                                                    | 2     | CO2 |

|     | d) Scatterplot                                                                                                                                                                                                                                      |    |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| g.  | Financial fraud detection is an example of:  a) Prediction problem b) Clustering problem c) Outlier detection problem d) None of these                                                                                                              | 2  | CO2 |
| h.  | Recall is a useful metric in cases where False Negative trumps False Positive.  a) True b) False                                                                                                                                                    | 2  | CO2 |
| i.  | On what stage of data exploration are the missing values handled?  a) Data transformation b) Data reduction c) Data cleaning d) All of the above                                                                                                    | 2  | CO2 |
| j.  | Statement 1: Data transformation works on individual variables.  Statement 2: Data reduction works on a set of variables.  a) Only statement 1 is true b) Only statement 2 is true c) Both the statements are True d) Both the statements are False | 2  | CO1 |
|     | SECTION B 4Qx5M= 20 Marks                                                                                                                                                                                                                           |    |     |
| Q2. | What do you understand by data cleaning? What is an outlier? Explain the process of outlier detection.                                                                                                                                              | 5  | CO2 |
| Q3. | What is dimensionality reduction? Explain the difference between feature extraction and feature extraction.                                                                                                                                         | 5  | CO1 |
| Q4. | What is curse of dimensionality?                                                                                                                                                                                                                    | 5  | CO2 |
| Q5. | What is subset selection? Explain forward and backward search.                                                                                                                                                                                      | 5  | CO1 |
|     | SECTION-C<br>3Qx10M=30 Marks                                                                                                                                                                                                                        |    |     |
| Q6. | Explain in detail the steps in Principle component Analysis.                                                                                                                                                                                        | 10 | CO2 |
| Q7. | What do you understand by a time series? What is stationarity? How do you know if a given time series is stationary or not?                                                                                                                         | 10 | CO2 |
| Q8. | A. What do you understand by CART and CHAID? What is the difference between the two?                                                                                                                                                                | 10 | CO2 |

|     | OR  B. What is data mining? What are the different techniques used in data mining?                                                                                                                         |              |                             |                      |          |              |                  |    |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|----------------------|----------|--------------|------------------|----|-----|
|     |                                                                                                                                                                                                            |              |                             |                      |          |              |                  |    |     |
|     | •                                                                                                                                                                                                          |              |                             | \$                   | SECTION  | -D           | <u>.</u>         |    |     |
|     |                                                                                                                                                                                                            |              |                             | 2Qx                  | 15M = 30 | Marks        |                  |    |     |
| Q9. | Considering the following confusion matrix, define and compute the following:  a) Accuracy b) Precision c) Recall d) F1 score e) Sensitivity                                                               |              |                             |                      |          |              |                  | 15 | CO3 |
|     |                                                                                                                                                                                                            | _            | Pre                         | dicted               |          |              |                  |    |     |
|     | N=16                                                                                                                                                                                                       | 5            | No Yes                      |                      |          |              |                  |    |     |
|     |                                                                                                                                                                                                            | No           | 50                          | 10                   | 60       |              |                  |    |     |
|     | Actual                                                                                                                                                                                                     | Yes          | 5                           | 100                  | 105      |              |                  |    |     |
|     |                                                                                                                                                                                                            |              | 55                          | 110                  |          | 1            |                  |    |     |
|     | model? Using the key statistics di and its predictors.  SUMMARY OUTPUT  Regression Statistics  Multiple R 0.814 R Square 0.663 Adjusted R Square 0.636 Standard Error 51.761 Observations 28  ANOVA  df SS |              |                             |                      | MS       | strength     | Significance F   |    |     |
|     | Regression                                                                                                                                                                                                 |              |                             | 31567.02             | 65783.51 | 24.55        | 0.0000013        | 15 | CO3 |
|     | Residual<br>Total                                                                                                                                                                                          |              |                             | 66979.65<br>08546 68 | 2679.19  |              |                  |    |     |
|     | TOtal                                                                                                                                                                                                      | 27 198546.68 |                             |                      |          |              |                  |    |     |
|     |                                                                                                                                                                                                            |              | oefficients Standard        |                      |          | t Stat       | P-value          |    |     |
|     | Intercept<br>X <sub>1</sub>                                                                                                                                                                                |              | 3.3937 67.51<br>1.1151 0.52 |                      |          | 3.01<br>2.11 | 0.0059<br>0.0448 |    |     |
|     | X <sub>2</sub>                                                                                                                                                                                             |              | 2.2115                      | 0.5                  |          | -3.90        | 0.0006           |    |     |
|     | OR  B. The following Excel ogive shows toy sales by a company                                                                                                                                              |              |                             |                      |          |              |                  |    |     |
|     | over a 12-month period. As a business analyst what                                                                                                                                                         |              |                             |                      |          |              |                  |    |     |

