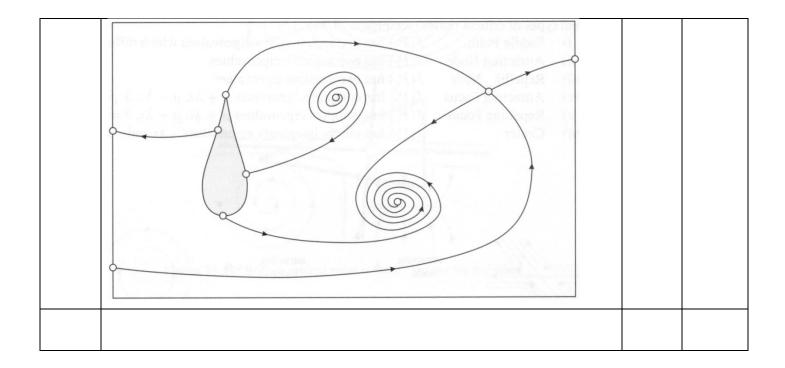
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Flow Visualization and Post Processing
Program: M. Tech. CFD
Time : 03 hrs.
Course Code: ASEG 7029
Max. Marks: 100


Instructions: Assume missing data, if any, appropriately. All the symbols used in the paper have their

usual meanings.

SECTION A (50x4M=20Marks)

	(5QA-101-20101a1 K5)		
S. No.		Marks	CO
Q 1	Discuss the "colour mapping" visualization of a scalar dataset with an appropriate example.	04	CO4
Q 2	Define slicing in context to data enrichment. Write down the interpolation functions to evaluate an off node value of a function over a 1D linear, and 2D triangular mesh element.	04	CO4
Q 3	Discuss the spot noise method for visualization of velocity fields.	04	CO2
Q 4	What are ellipsoid glyphs? Discuss how these glyphs can be used to visualize a symmetric tensor field.	04	CO4
Q 5	Give an account of Brodlie's taxonomy of visualization mappings for various classes of data. Discuss any two scalar visualization mappings.	04	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Elucidate the various visualization mapping schemes for streamline generation through a velocity vector field. How can an adaptive time stepping method be used improve the accuracy of a first order Euler scheme?	10	CO2
Q 7	What is ray casting? For a ray cast during volume visualization, derive an expression for the colour intensity on the Image plane obtained by a <i>front-to-back</i> compositing of local and background colours.	10	CO1

Q 8	List down the importance of vortex extraction in fluid mechanics. Discuss the				
	following algorithms for extracting vortex core from CFD data				
	a) A mathad	10	CO3		
	a) λ_2 method				
	b) Eigenvector method				
Q 9	Write a code to generate a 7 x 16 grid as shown in figure below and write to a				
	file the grid data in a structured format (I, J, K) for the purpose of visualization				
	using TECPLOT.				
	1	10	CO4		
		10	001		
	10				
	5				
	-				
	20				
	SECTION-C		•		
(2Qx20M=40 Marks)					
Q 10	Draw all the distinct topological cases for the marching square algorithm and				
	thus list the steps for generation of <i>isolines</i> using this algorithm. Also, explicate				
	the methods to resolve the contouring ambiguities that might arise during the	20	CO2		
	process.				
Q 11	(a) What are the various critical points in a vector field? How can these critical				
	points be classified? Illustrate with examples.				
	(b) The topological behavior of a flow around an airfoil is shown below. The				
	critical points are represented by open circles. Name all the critical points shown	20	CO3		
	and explain the behavior of the fluid flow near these singularities.				

