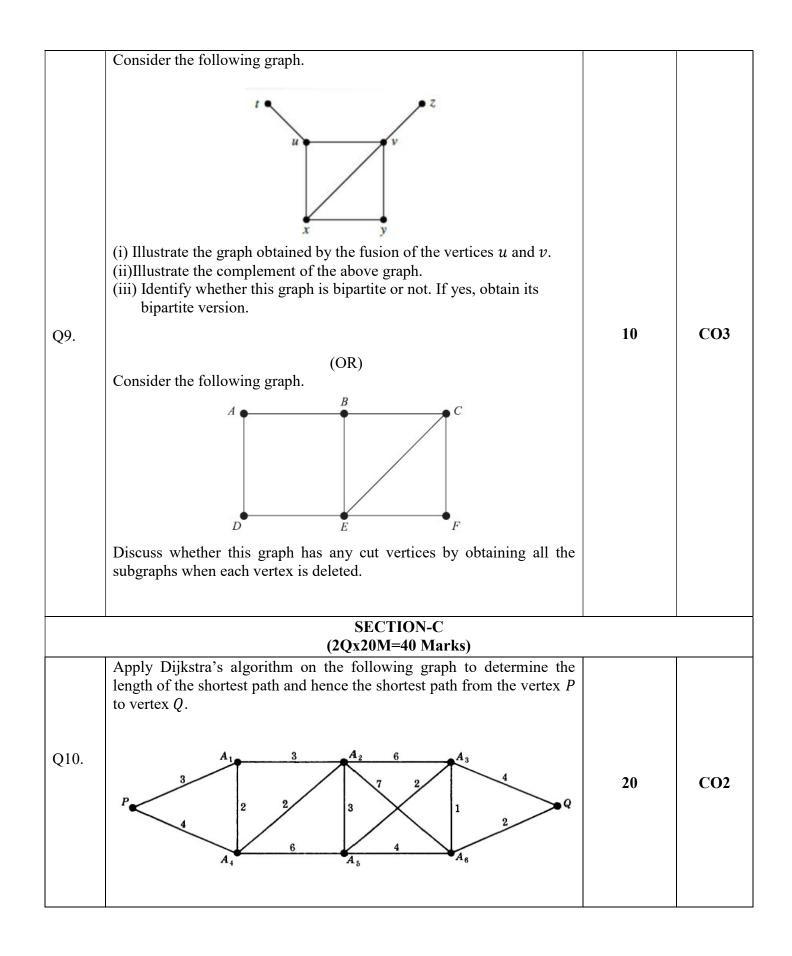
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022


Course: Graph Theory Program: B.Sc H Mathematics Course Code: MATH2025K Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q1.	Define the following with relevant examples (a) Multigraph (b) Directed graph (c) Complete graph (d) Pseudograph	4	C01
Q2.	(a) Describe the 'degree sequence' of a graph.(b) Draw a multigraph with the degree sequence (5,5,4,3,2,1).	4	C01
Q3.	Show that the maximum number of edges in a simple graph with n number of vertices is $\frac{n(n-1)}{2}$.	4	CO3
Q4.	Define Euler circuit and find at least two Euler circuits from the following graph. $\begin{array}{c} D\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	4	CO2

	Define incidence matrix and draw a digraph from the following incidence matrix.		
Q5.	$ \begin{bmatrix} -1 & 0 & 0 & 1 & -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & -1 & -1 & 1 \end{bmatrix} $	4	CO2
	SECTION B		
	$(4Qx10M=40 \text{ Marks})$ Define Isomorphism of graphs and check whether the following graphs G and H given below are isomorphic or not by means of a function $f:V(G) \rightarrow V(H)$. Also, verify your answer by means of adjacency matrices of the graphs G and H.		
Q6.	$\begin{array}{c} u_1 \\ u_5 \\ u_4 \\ G \\ \end{array}$	10	CO1
Q7.	 Draw the following graphs. (a) A graph that has an Eulerian circuit but not a Hamiltonian circuit. (b) A graph with distinct Eulerian and Hamiltonian circuits. (c) A graph that has a Hamiltonian circuit which is also an Eulerian circuit. (d) A graph that has neither an Eulerian circuit nor a Hamiltonian circuit. 	10	CO2
Q8.	Apply the Naïve method to obtain the minimum weight Hamiltonian cycle(s) starting with the vertex 1 of the graph given below.	10	CO2

	Apply Floyd Warshall algorithm on the following graph and find the shortest path distance between every pair of vertices.							
Q11.	(OR) An ice cream company has a distribution depot D in a city from which it has to supply ice cream to four of its vendors say V_1, V_2, V_3 , and V_4 located in different parts of the city. The following table gives the distance in kilometers between the depot and the location of its four vendors.						20M	СО3
		D	V ₁	V_2	V ₃	V ₄		
	D	8	3.5	3	4	2		
	V ₁	3.5	∞	4	2.5	3		
	V ₂	3	4	8	4.5	3.5		
	V ₃	4	2.5	4.5	8	4		
	V ₄	2	3	3.5	4	∞		
						vendor once least possible		
