Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Electromagnetic Waves

Program: B.Tech (Electronics and Communication Eng)

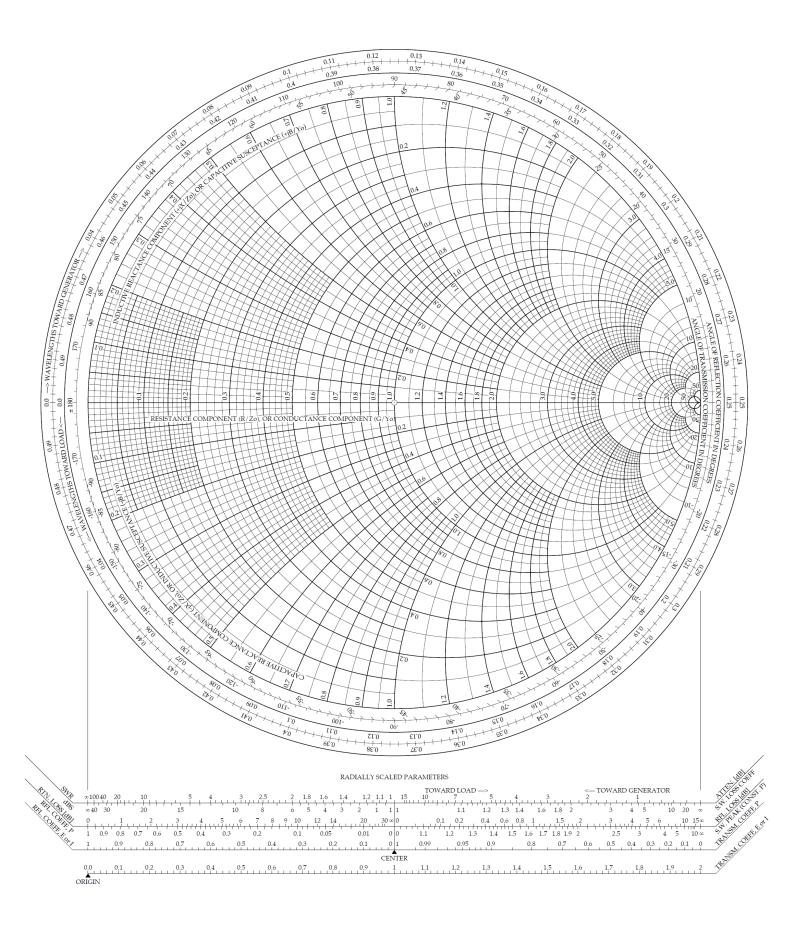
Course Code: ECEG-2035

Semester: IV Time: 03 hrs.

Marks

Max. Marks: 100

 \mathbf{CO}


Instructions:

S. No.

SECTION A (5Qx4M=20Marks)

Q 1	State Gauss Divergence theorem.	4	CO1
Q 2	What is a transmission line? State various types of transmission line and their application.	4	CO3
Q 3	Explain TEM, TE, and TM modes of wave propagation.	4	CO4
Q 4	Deduce continuity equation for time-varying fields.	4	CO1
Q 5	Write a short note on the microstrip line.	4	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	State Maxwell's equation in differential and integral form. Write their statement and explain the physical significance of each equation.	10	CO1
Q 7	State and derive the Poynting theorem.	10	CO2
Q 8	A uniform wave with a frequency of 100 MHz is traveling in a medium with $\mu_r = 1 \wedge \varepsilon_r = 16$. Determine (a) phase velocity, (b) wavenumber, (c) wavelength in medium, and (d) intrinsic impedance of the medium.	10	CO2
Q 9	Determine the reflection coefficient (Γ) of a transmission line ($Z_0=50\Omega$) terminated with following load impedances using Smith Chart: (a) $Z_L=0\Omega$, (b) $Z_L=\infty$, (c) $Z_L=50\Omega$ and (d) $Z_L=100+j0\Omega$.	10	CO3
	SECTION-C		'
	(2Qx20M=40 Marks)		
Q 10	Derive the general form of a transmission line equation. OR	20	CO3
	Derive the expression of the input impedance of the lossless transmission line terminated with load impedance Z _L .	20	CO3
Q 11	(a) Derive wave equation starting from Maxwell's equation for free space.	10	CO2

(b) What is a uniform plane wave? Describe its properties, both physically and mathematically.	10	
--	----	--

