Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Engineering Physics Program: B.Tech. CS (Batches: 21-46) **Course Code: PHYS 1023**

Semester: II Time: 03 hrs. Max. Marks: 100

Instructions:

- There are 3 Sections, such as section A, B & C.
- Section A is compulsory; however, section B & section C have internal choices. •
- A scientific calculator is allowed. •

	SECTION A		
	$(5Q \times 4M = 20 Marks)$		
S. No.		Marks	CO
Q 1.	With a suitable diagram, explain the recording of a hologram.	4	CO1
Q 2.	Check whether the electrostatic field represented by $\vec{E} = axy^2(y\hat{\imath} + x\hat{\jmath})$ is conservative or not?	4	CO2
Q 3.	Write Maxwell's equations in differential form for time-varying fields.	4	CO3
Q 4.	Calculate the ratio of de-Broglie waves associated with a proton and an electron, each having kinetic energy of 20 MeV.	4	CO4
Q 5.	List out the applications of nanomaterials.	4	CO5
	SECTION B	· · · ·	
	$(4Q \times 10M = 40 Marks)$		
Q 6.	Explain the construction and working of a He-Ne laser using suitable diagrams. Differentiate between He-Ne laser and Ruby laser.	10	CO1
Q 7.	Explain the concept of Maxwell's displacement current and show how it led to the modification of Ampere's law.	10	CO2
Q 8.	(a) In a certain region, $\vec{J} = 3r^2 \cos \theta \hat{a}_r - r^2 \sin \theta \hat{a}_\theta$ A/m, find the current crossing the surface defined by $\theta = 30^\circ$, $0 < \phi < 2\pi$, $0 < r < 2$ m.	5	CO3
	(b) What are nanomaterials? Differentiate between classical and quantum computing.	5	CO5

Show that when a photon of energy E is scattered from a free electron at rest (rest mass energy E_0), the maximum kinetic energy of the recoiling electron is given by $K.E. = \frac{2E^2/E_0}{1 + 2E/E_0}$ SECTION-C ($2Q \times 20M = 40 Marks$)Q 10.(a) Explain the attenuation in optical fiber. What are the important factors responsible for the loss in optical fiber? Discuss. (b) Show that the pair producton phenomenon cannot occur in empty space.10COQ 11.(a) Show if a particle of mass m is confined a one-dimensional box of length a , the allowed energies and normalized wave functions are $E = \frac{n^2h^2}{8ma^2}$ and $\psi = \sqrt{\frac{2}{a}} sin(\frac{n\pi x}{a})$ 15CO(b) A magnetic field $\vec{B} = B_0(t+2j-4\hat{k})$ exists at a point. If a test charge moves with a velocity $\vec{v} = v_0(3 t - j + 2\hat{k})$ experiences no force at a certain point, what will be the electric field at that point in SI units? OR (a) What is the significance of wave function ψ ? Deduce the time-dependent Schrödinger wave equation.15CO	Q 9.	Calculate the work function, stopping potential and maximum velocity of photoelectrons for a light of wavelength 4350 Å when it incident on sodium surface. Consider the threshold wavelength of photoelectrons to be 5420 Å.		
mass energy E_0), the maximum kinetic energy of the recoiling electron is given by $K.E. = \frac{\frac{2E^2}{E_0}}{1 + \frac{2E}{E_0}}$ SECTION-C (2Q × 20M = 40 Marks) Q 10. (a) Explain the attenuation in optical fiber. What are the important factors responsible for the loss in optical fiber? Discuss. (b) Show that the pair producton phenomenon cannot occur in empty space. (a) Show if a particle of mass m is confined a one-dimensional box of length a, the allowed energies and normalized wave functions are $E = \frac{n^2 h^2}{8ma^2}$ and $\psi = \sqrt{\frac{2}{a}} sin(\frac{n\pi x}{a})$ (b) A magnetic field $\vec{B} = B_0(\hat{i} + 2\hat{j} - 4\hat{k})$ exists at a point. If a test charge moves with a velocity $\vec{v} = v_0(3\hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a certain point, what will be the electric field at that point in SI units? OR (a) What is the significance of wave function ψ ? Deduce the time-dependent Schrodinger wave equation. 15 CO		OR	10	CO4
(2Q × 20M = 40 Marks)Q 10.(a) Explain the attenuation in optical fiber. What are the important factors responsible for the loss in optical fiber? Discuss. (b) Show that the pair producton phenomenon cannot occur in empty space.10COQ 11.(a) Show if a particle of mass m is confined a one-dimensional box of length a, the allowed energies and normalized wave functions are $E = \frac{n^2 h^2}{8ma^2}$ and $\psi = \sqrt{\frac{2}{a}} sin \left(\frac{n\pi x}{a}\right)$ 15CO(b) A magnetic field $\vec{B} = B_0(\hat{i} + 2\hat{j} - 4\hat{k})$ exists at a point. If a test charge moves with a velocity $\vec{v} = v_0(3 \hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a certain point, what will be the electric field at that point in SI units?5COOR(a) What is the significance of wave function ψ ? Deduce the time-dependent Schrodinger wave equation.15CO		mass energy E_0), the maximum kinetic energy of the recoiling electron is given by		
Q 10.(a) Explain the attenuation in optical fiber. What are the important factors responsible for the loss in optical fiber? Discuss. (b) Show that the pair producton phenomenon cannot occur in empty space.10COQ 11.(a) Show if a particle of mass m is confined a one-dimensional box of length a, the allowed energies and normalized wave functions are $E = \frac{n^2 h^2}{8ma^2}$ and $\psi = \sqrt{\frac{2}{a}} sin \left(\frac{n\pi x}{a}\right)$ 15CO(b) A magnetic field $\vec{B} = B_0(\hat{i} + 2\hat{j} - 4\hat{k})$ exists at a point. If a test charge moves with a velocity $\vec{v} = v_0(3 \hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a certain point, what will be the electric field at that point in SI units?5CO(a) What is the significance of wave function ψ ? Deduce the time-dependent Schrodinger wave equation.15CO				
Q 11.(a) Show if a particle of mass m is confined a one-dimensional box of length a, the allowed energies and normalized wave functions are $E = \frac{n^2 h^2}{8ma^2}$ and $\psi = \sqrt{\frac{2}{a}} sin\left(\frac{n\pi x}{a}\right)$ 15CO(b) A magnetic field $\vec{B} = B_0(\hat{i} + 2\hat{j} - 4\hat{k})$ exists at a point. If a test charge moves with a velocity $\vec{v} = v_0(3 \hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a 	Q 10.	(a) Explain the attenuation in optical fiber. What are the important factors	10	CO1
a, the allowed energies and normalized wave functions are $E = \frac{n^2 h^2}{8ma^2}$ and $\psi = \sqrt{\frac{2}{a}} sin\left(\frac{n\pi x}{a}\right)$ (b) A magnetic field $\vec{B} = B_0(\hat{i} + 2\hat{j} - 4\hat{k})$ exists at a point. If a test charge moves with a velocity $\vec{v} = v_0(3\hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a certain point, what will be the electric field at that point in SI units?OR(a) What is the significance of wave function ψ ? Deduce the time-dependent Schrodinger wave equation.15		(b) Show that the pair producton phenomenon cannot occur in empty space.	10	CO4
moves with a velocity $\vec{v} = v_0 (3 \hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a certain point, what will be the electric field at that point in SI units? OR (a) What is the significance of wave function ψ ? Deduce the time-dependent 15 CO Schrödinger wave equation.	Q 11.	<i>a</i> , the allowed energies and normalized wave functions are $E = \frac{n^2 h^2}{8ma^2}$	15	CO4
(a) What is the significance of wave function ψ ? Deduce the time-dependent 15 CO Schrodinger wave equation.		moves with a velocity $\vec{v} = v_0 (3 \hat{i} - \hat{j} + 2\hat{k})$ experiences no force at a	5	CO3
Schrodinger wave equation.		OR		
(b) Using Ampere's law, obtain an expression for the magnetic field due to			15	CO4
a current carrying a straight conductor of infinite length. 5 CO		(b) Using Ampere's law, obtain an expression for the magnetic field due to a current carrying a straight conductor of infinite length.	5	CO3

Standard Physics Constants and their values:

Constants	Standard values		
Planck's constant (h)	6.626×10^{-34} Js		
Permittivity of free space (ε_0)	$8.854 \times 10^{-12} F/m$		
Velocity of light (<i>c</i>)	$3 \times 10^8 \ m/s$		
Boltzmann constant (k_B)	1.38×10^{-23} J/K		
Rest mass of an electron (m_0)	$9.11 \times 10^{-31} kg$		
Charge on electron (<i>e</i>)	$1.6 \times 10^{-19} C$		