Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023 **Course: Digital Signal Processing** Program: B.Tech-CSE-All **Course Code: CSEG 3042P** Semester: VI Time: 03 hrs. Max. Marks: 100 **Instructions: Explain in short. (60-70 words)** ## SECTION A (5Qx4M=20Marks) | S. No. | | Marks | CO | |--------|--|-------|-----| | Q 1 | Discuss the advantages of Digital Signal Processing over Analog Signal Processing. | 4 | CO1 | | Q 2 | What is the significance of DTFT? Discuss any five properties of Discrete Time Fourier Transform (DTFT). | 4 | CO2 | | Q 3 | List the properties of FIR and IIR filters | 4 | CO2 | | Q 4 | How twiddle factor is used to get the phase factors inverse FFT and inverse DFT computation. | 4 | CO3 | | Q 5 | Detail the concept of estimation of quantization noise power. | 4 | CO4 | ## **SECTION B** (4Qx10M = 40 Marks) **Instruction: Write brief notes.** (100-150 words) | instruction. Write brief notes. (100-130 words) | | | | | |---|---|-----|-----|--| | Q 6 | (a) Given x(n) = {1, 0, -1, 0}, Find X(k) using DIT-FFT algorithm with complete structure of signal flow and computation. (b) Check whether the given signals are causal or non-causal y(n) = a.x(n) y(n) = x(n) + 3x(n+4) | 6+4 | CO1 | | | Q 7 | Discuss the convolution of two signals in details. Determine the convolution of two signals $x(n) = \{1, 2, 3, 4\}$ $h(n) = \{2, 2, 3, 1\}$ | 10 | CO2 | | | Q 8 | Give example of floating point and fixed point numbers. Detail the concept of rounding and truncation errors | 10 | CO2 | | | Q 9 | Detail the sampling theorem and interpolation in multirate DSP. | 10 | CO3 | | | SECTION-C $(2Q \times 20M = 40 \text{ Marks})$ | | | | | |--|---|----|-----|--| | Q 10 | Detail the significance of frequency sampling method for FIR filter design. Discuss the role of window methods with complete description of Hamming and Hanning functions in the design.
OR Discuss the significance of Direct form realization of IIR systems as Direct from-I and direct form-II. Realize the following difference equation in both forms $y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + b_3 x(n-3) - a_1 y(n-1) - a_2 y(n-2) - a_3 y(n-3)$ | 20 | CO1 | | | Q 11 | (a) Detail the signal flow graph if radix-2 FFT algorithms from first, second and third stage using DIT-FFT or DIF-FFT algorithms. (b) Computer the FFT for the following sequence using either DIT-FFT or DIF-FFT algorithm with compete description of flow diagram. x(n) = {1,2,3,4,4,3,2,1} | 20 | CO3 | |