Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Process Modelling and Simulation Semester : II **Program: M. Tech Chemical Engineering** : 03 hrs. Time **Course Code: CHPD7009** Max. Marks: 100

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. 3) The notations used here have the usual meanings.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Discuss about dynamic modelling of a chemical engineering system.	04	CO1
Q 2	Explain about the mathematical consistency of a process model.	04	CO1
Q 3	Discuss the sequential modular approach of process simulation	04	CO1
Q 4	State the assumptions of continuously stirred tank reactor.	04	CO1
Q 5	Define the variables and the parameters used in a mathematical model.	04	CO1
	SECTION B		l
	(4Qx10M= 40 Marks)		
Q 6	Illustrate the application of Neumann and Dirichlet boundary conditions in mathematical modelling with suitable examples.	10	CO2
Q 7	For laminar flow, the friction coefficient 'f' is related to Reynolds number as $f = aRe^b$. Determine $a \& b$ using a method of least squares to fit the following data.	10 CO2	CO2
	f 500 1000 1500 2000		CO2
	Re 0.0320 0.0160 0.0107 0.0080		
Q 8	Write down the mass balance and energy balance equations for multicomponent distillation column for single stage operation.	10	CO3
Q 9	Describe the solution of partial differential equations by Orthogonal collocation technique. OR	10	COS
	Classify the partial differential equations.	10	CO5

SECTION-C				
0.10	(2Qx20M=40 Marks)			
Q 10	Explain the application of a Newton-Raphson's method to solve the mathematical model equations of a triple-effect evaporator system for a forward feed arrangement.	20	CO3	
Q 11	Develop a two-dimensional pseudo heterogeneous model of fixed bed reactor with suitable boundary conditions. State the assumptions clearly.			
	<u>OR</u>			
	The Van de Vusse reaction operated in a continuous stirred tank reactor is given as follows:			
	$A \xrightarrow{k_1} B \xrightarrow{k_2} C$			
	$2A \xrightarrow{k_3} D$			
	The component material balance equations are described as: $\frac{dC_A}{dt} = -k_1C_A - k_3C_A^2 + \frac{F}{V}(C_{Af} - C_A)$ $\frac{dC_B}{dt} = k_1C_A - k_2C_B + \frac{F}{V}C_B$	20	CO4	
	 (i) Compute the steady state values of C_A and C_B using the given data. (ii) Perform three iterations employing the fourth-order Runge– Kutta method for dynamic study using a step size of 1 for 0 ≤ t ≤ 2 h for a given data and plot the values of C_A and C_B as a function of time. 			
	Data: Reactor volume $(V) = 2$ lit Feed flow rate $(F) = 50$ lit/h Feed concentration of reactant $A(C_{Af}) = 10$ mol/lit Kinetic constant $(k_1) = 50$ h ⁻¹ Kinetic constant $(k_2) = 100$ h ⁻¹ Kinetic constant $(k_3) = 10$ lit/mol.h			