Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: System Analysis and Process Optimization

Program: M. Tech Chemical Engineering

Course Code: CHPD7027

Semester : II

Time : 03 hrs.

Max. Marks: 100

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. 3) The notations used here have the usual meanings.

wherev	er necessary. 3) The notations used here have the usual meanings.		
	SECTION A		
S. No.	(5Qx4M=20Marks)	N/C 1	CO
		Marks	CO
Q 1	Define a saddle point and indicate its significance.	04	CO1
Q 2	Differentiate between a slack and a surplus variable.	04	CO1
Q 3	State the significance of Lagrange multipliers	04	CO1
Q 4	Write down the standard form of single objective optimization problem.	04	CO1
Q 5	Define gradient of a function.	04	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Minimize $f = x_1^2 + (x_2 - 1)^2$ subject to $-2x_1^2 + x_2 = 4$ by Lagrange multiplier method.	10	CO2
Q 7	Find the minimum of $f = x(x - 1.5)$ in the interval (0.0, 1.0) to within 10% of the exact value using interval halving method.	10	CO2
Q 8	Perform one iteration using Cauchy's method to minimize $f(x) = 9x_1^2 + 4x_1x_2 + 7x_2^2$ using $X_0 = {1 \atop 1}$	10	CO3
Q 9	Discuss the algorithm of secant method.		
	<u>OR</u>	10	CO4
	Discuss about the interior penalty function method.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Explain the solution algorithm used in NSGA – II optimization technique.	20	CO3

Q 11	Using a simplex method, Maximize $f = 3x_1 + 2x_2$ Subject to constraints $2x_1 + x_2 \le 10$; $x_1 + x_2 \le 8$; $x_1 \le 4$ and $x_1, x_2 \ge 0$		
	<u>OR</u>	20	CO4
	Discuss the algorithm of Newton's method for the minimization of multivariable functions. Show that the Newton's method finds the minimum of a quadratic function in one iteration		