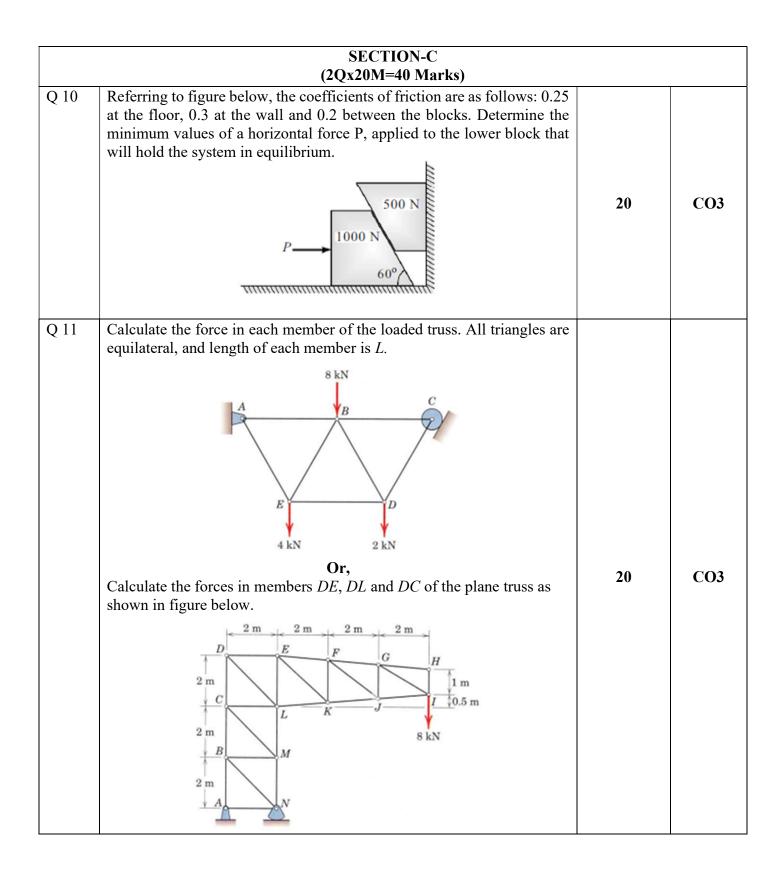
Name:

Enrolment No:


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Engineering Mechanics Program: B.Tech. Aerospace Course Code: MECH 1002 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: 1. Assume suitable right-handed coordinate system if it is not mentioned in problem.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	Explain perfect and redundant truss.	4	CO1	
Q 2	Define Centre of Gravity and Centroid.	4	CO1	
Q 3	What is the condition of self-locking in wedge and screw jack friction applications.	4	CO1	
Q 4	Determine the zero-force member in the loaded truss as shown below.	4	CO1	
Q 5	The aircraft landing gear consists of a hydraulic piston-cylinder D , the two pivoted links OAB and BC . Draw the free body diagram of links OAB and BC .	4	CO1	

	SECTION B		
Q 6	(4Qx10M= 40 Marks) The ratio of lift force L to drag force D for the simple airfoil is $L/D = 10$. If the lift force on the short section of airfoil is 50 N, determine the resultant force R and angle θ which it makes with the horizontal.		
	L C D Air flow	10	CO2
Q 7	The angular displacement of a rotating rigid body is defined by the relation $\theta = 3t^3 + t - 2$, here θ is expressed in radians, determine the angular displacement, angular velocity, and angular acceleration of the rigid body when t = 3 seconds.	10	CO2
Q 8	The rotation of the 0.9 m arm <i>OA</i> about <i>O</i> is defined by the relation $\theta = 0.15t^2$, where θ is expressed in radians and t in seconds. Collar <i>B</i> slides along the arm in such a way that its distance from <i>O</i> is $r = 0.9 - 0.12t^2$, where r is expressed in meters and t in seconds. After the arm <i>OA</i> has rotated through 30°, determine (a) the total velocity of the collar, (b) the total acceleration of the collar, (c) the relative acceleration of the collar with respect to the arm.	10	CO2
Q 9	The magnitude and direction of the velocities of two identical frictionless balls before they strike each other, is shown in Fig. 9(a) . Assume $e = 0.9$, determine the magnitude and direction of the velocity of each ball after the impact.	10	CO2

