Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Statistical Mechanics Program: MSc (Physics) Course Code: PHYS 7017 Semester: II Time: 03 hours Max. Marks: 100

Instructions:

- All questions are compulsory (Q9 and Q11 have an internal choice).
- Scientific calculators can be used for calculations.

SECTION A

(5Q x 4M = 20 Marks)

S. No.		Marks	СО		
Q1	What do you understand by phase space?	4	CO1		
Q2	If three identical particles are distributed over three single particle states, how many possibilities are allowed if the particles are (a) spin-zero pions, and (b) electrons?	4	CO1		
Q3	For fermions, plot $D(\varepsilon)$ and $n(\varepsilon)$ in the low- <i>T</i> and high- <i>T</i> limits.	4	CO3		
Q4	What is meant by scaling behavior?	4	CO4		
Q5	What do you understand by spontaneous symmetry breaking?	4	CO4		
	SECTION B				
(4Qx10M= 40 Marks)					
Q6	Explain the terms most probable value, ensemble average and the most probable distribution.	10	CO1		
Q7	For an ideal Bose gas with continuous energy spectrum write expressions for number N and internal energy U, and show that $N = 2.315 \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} (k_B T_E)^{3/2}$	10	CO3		
Q8	Discuss the Landau theory of phase transition.	10	CO4		

Q9	Discuss the quantization of vibrational motion and obtain expressions for vibrational partition function and vibrational energy.	10	CO2
	OR		
	Discuss the properties of grand canonical ensemble, its partition function and density distribution function.	10	
	SECTION-C		·
	(2Qx20M=40 Marks)		
Q10	a) Discuss the Langevin model of paramagnetism.	10	CO2
	b) Consider a system of N particles and a phase space consisting of only two states having energies 0 and ε . Calculate partition function, internal energy and best expectity of the system	10	
	energy, and heat capacity of the system.	10	
Q11	a) For an ideal quantum gas discuss the particle distribution and internal energy. For a system of Fermions having continuous energy spectrum, write down the expressions for number N and internal energy U in terms of density of states.	10	CO3
	b) The Fermi energy of lithium is 4.72 eV at $T = 0$. Calculate the number of conduction electrons per unit volume. Determine the values of Fermi momentum and Fermi temperature.	10	
	OR		
	a) Find the most probable state for Bose-Einstein distribution and show that the equilibrium state is given by: $n_i = g_i/[exp(\alpha+\beta\epsilon_i) - 1]$	10	
	b) Calculate the Fermi wavelength and Fermi energy for 4.2×10^{21} electrons in a box of volume 1 cm ³ .	10	

Planck constant $h = 6.62 \times 10^{-34}$ J-s

Mass of electron $m_e = 9.31 \times 10^{-31} \text{ kg}$

Boltzmann constant $k_B = 1.38 \ 10^{-23} \ J/K$

Universal gas constant R = 8.314 J/K mol