N	a	m	Δ	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Atomic, molecular and laser physics

Program: MSc (Physics)
Course Code: PHYS7022

Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: • All the questions of section-A are compulsory

• Q9 in Section-B and Q11 in Section-C have internal choice

SECTION-A (5Qx4M=20Marks)

S. No.		Marks	CO
Q1	What are the characteristics of an ideal laser beam?	4	CO1
Q2	What are the differences between E.S.R and N.M.R	4	CO1
Q3	Draw 3-level laser system and discuss briefly the population inversion. Give reason why output is pulsed		CO2
Q4	A He-Ne laser (633.5 nm) has beam diameter of 1.5 mm, calculate angular spread	4	CO2
Q5	Difference between first rotational energy levels of a diatomic molecule is 50 cm ⁻¹ . Compute the moment of inertia of the molecule	4	CO3
	SECTION-B (4Qx10M= 40 Marks)		
Q6	Discuss construction and working of 4 level He-Ne laser	10	CO1
Q7	Write down m_j values for $3^2P_{3/2}$ state. Calculate Lande 'g' factor and hence, gm_j	10	CO2
Q8	Compute vibrational force constant k when HCl, a polar diatomic molecule vibrates at 280000 m^{-1} . Atomic mass unit = $1.66 \times 10^{-27} \text{ Kg}$	10	CO2
Q9	Analyze, P, R and Q branches of vibrational-rotational spectra of diatomic molecule	10	CO3

	OR		
	Analyze rotational spectra when a diatomic molecule shows 1^{st} microwave absorption at, $\bar{\nu} = 10 \ cm^{-1}$ to obtain rotational constant (B) and moment of inertia (I)		
	SECTION-C (2Qx20M=40 Marks)		
Q10	a) Discuss normal Zeeman effect with neat diagram (level splitting: $2p \rightarrow 1s$). What external magnetic field can produce 35 GHz frequency shift when atoms are placed in that magnetic field?	10	CO1
b	b) State Franck-Condon principle for electronic-vibrational transition. Depict Morse curve for three different cases when upper state equilibrium position is shifted with respect to ground state	10	CO2
Q11	a) Write short note on N.M.R. Estimate the MHz frequency required for N.M.R. to perform when applied magnetic field is 1.35 Tesla	10	СОЗ
	b) An experiment is performed using green laser ($\lambda = 540$ nm) to estimate separation (D) between earth and moon. If the laser beam has initial diameter of 1 mm (on earth) and areal spread (at moon) of 43×10^3 km ² , calculate D	10	CO3
	OR		
	a) Discuss 4-level laser system with energy levels. Analyse why threshold energy is required less than that of 3-level laser system.	10	CO3
	b) Force constant (k) of HBr is 380 N/m. What is the estimated vibrational level spacing for HBr?	10	CO3