Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Real Analysis II

Program: B.Sc. (H) Mathematics & Int. B.Sc. M.Sc. Mathematics

Course Code: MATH 2051

Semester: IV

Time : 03 hrs.

Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

SECTION A (50x4M=20Marks)

S. No.		Marks	CO
Q 1	Compute by Riemann integration $\int_{-1}^{1} f(x) dx$, where $f(x) = x^2$.	4	CO1
Q 2	Determine the interval of convergence of the power series $\sum \{\binom{1}{n}(-1)^{n-1}(x)^n\}.$	4	CO3
Q 3	Give an example to show that the limit of integrals is not equal to the integral of limit.	4	CO2
Q 4	Find the interval of absolute convergence for the series $\frac{x}{n} + \frac{x^2}{n^2} + \frac{x^3}{n^3} + \cdots$.	4	CO3
Q 5	Prove that the sequence $\{f_n\}$, where $f_n(x) = nxe^{-nx^2}$, $x \ge 0$ is not uniformly convergent on $[0, k]$, $k > 0$.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Show that the function f defined as follows: $f(x) = \frac{1}{2^n}, \text{ when } \frac{1}{2^{n+1}} < x < \frac{1}{2^n}, (n = 0, 1, 2,),$ $f(0) = 0,$	10	CO1
	is integrable on [0, 1], although it has an infinite number of points of discontinuity.		
Q 7	Test uniform convergence for, the sequence $\{f_n\}$, where $f_n(x) = \frac{\sin nx}{\sqrt{n}}$, for $0 \le x \le 2\pi$.	10	CO2

Q 8	Show by integrating the series for $\frac{1}{(1+x)}$ that if $ x < 1$, then $\log(1+x) = \sum_{n=1}^{\infty} \left\{ (-1)^{n-1} / n \right\} x^n$.	10	CO3	
Q 9	Find the radius of convergence of the series $\frac{1}{2}x + \frac{1.3}{2.5}x^2 + \frac{1.3.5}{2.5.8}x^3 + \cdots$ OR Find the radius of convergence of the series $x + \frac{1}{2^2}x^2 + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$	10	CO3	
SECTION-C (2Qx20M=40 Marks)				
Q 10	i) If f and g are integrable on $[a, b]$ and g keeps the same sign over $[a, b]$, then there exists a number μ lying between the bounds of f such that $\int_a^b fg \ dx = \mu \int_a^b g \ dx$. ii) If a function is monotonic on $[a, b]$, then it is integrable on $[a, b]$.	20	CO1	
Q 11	 ii) If a function is monotonic on [a, b], then it is integrable on [a, b]. i) Let f_n be defined by f_n(x) = 1 - 1 - x² ⁿ, Test the uniform convergence of f_n in the domain {x: 1 - x² ≤ 1} = [-√2, √2]. ii) Let f_n be a sequence of functions defined on an interval I such that lim f_n(x) = f(x) ∀ x ∈ [a, b] and let M_n = Sup{ f_n(x) - f(x) : x ∈ [a, b]}. Then prove that ⟨f_n⟩ converge uniformly on [a, b] if M_n → 0 as n → ∞. OR ii) Show that the sequence ⟨f_n⟩, where f_n(x) = nx(1-x)ⁿ is not uniformly convergent on closed interval [0, 1]. iii) State and prove Cauchy's general principle of uniform convergence. 	20	CO2	