Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Real Analysis II

Program: B.Sc. (H) Mathematics & Int. B.Sc. M.Sc. Mathematics

Course Code: MATH 2051

Semester: IV

Time : 03 hrs.

Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО	
Q 1	Compute by Riemann integration $\int_{-1}^{1} f(x) dx$, where $f(x) = x $.	4	CO1	
Q 2	Determine the interval of convergence of the power series $\Sigma\{(1/n)(-1)^{n+1}(x-1)^n\}$.	4	CO3	
Q 3	Give an example to show that the limit of differentials is not equal to the differential of limit.	4	CO2	
Q 4	Find the interval of absolute convergence for the series $\sum_{n=1}^{\infty} x^n/n^n$.	4	CO3	
Q 5	Prove that the sequence $\{f_n\}$, where $f_n(x) = nxe^{-nx^2}$, $x \ge 0$ is not uniformly convergent on $[0, k]$, $k > 0$.	4	CO2	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Prove with the help of an example that the equation $\int_a^b f'(x)dx = f(b) - f(a)$, is not always valid.	10	CO1	
Q 7	Show that $\frac{1}{2}(tan^{-1}x)^2 = \frac{x^2}{2} - \frac{x^4}{4}\left(1 + \frac{1}{3}\right) + \frac{x^6}{6}\left(1 + \frac{1}{3} + \frac{1}{5}\right) + \dots, -1 \le x \le 1.$	10	CO3	
Q 8	Prove that the series obtained by integrating and differentiating power series term by term has the same radius of convergence as the original series.	10	CO2	

	Find the radius of convergence of the series			
Q 9	$1 + \frac{a.b}{1.c} + \frac{a(a+1)b(b+1)}{1.2c(c+1)} + \cdots$			
	OR	10	CO3	
	Find the radius of convergence of the series			
	$1 + x + 2! x^2 + 3! x^3 + 4! x^4 + \cdots$			
SECTION-C (2Qx20M=40 Marks)				
Q 10	i) If a function f is continuous on $[a, b]$, then there exists a number ξ in $[a, b]$ such that $\int_a^b f dx = f(\xi)(b - a)$.	20	CO1	
	ii) Prove that every continuous function is integrable.			
Q 11	i) State and prove Weierstrass's M test for uniform convergence. ii) Show that the sequence $\langle f_n(x) \rangle$, where $f_n(x) = \frac{\log(1+n^3x^2)}{n^2}$ is uniformly convergent on $[0, 1]$.			
	OR			
	i) Test for uniform convergence, the series, $\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \cdots, -\frac{1}{2} \le x \frac{1}{2}.$	20	CO2	
	ii) If $\langle f_n \rangle$ is a sequence of continuous functions on an interval $[a, b]$ and if $f_n \to f$ uniformly on $[a, b]$, then f is continuous on $[a, b]$.			