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ABSTRACT 

 

Satellites have provided us with a view of the ocean's surface over the last five 

decades, allowing us to accurately measure temperature, wind, and other 

meteorological phenomena. Although satellite-derived bathymetry (SDB) has been 

studied for four decades, its application in marine navigation remains limited due to 

accuracy constraints. Only a few of the SDB algorithms developed to date have been 

validated in various geographic regions. To add to the complexity, very few 

algorithms have been reported to be usable in turbid water, and this is one of the 

challenges this research tries to address. 

The study's objective is to utilise satellite data and machine learning techniques 

to verify the viability of SDB. The high-density in-situ data offers the potential to 

create a new, improved model to estimate depths in complex and challenging regions 

with significant turbidity. The primary goal of this study is to develop a better SDB 

algorithm that will be useful for operational maritime navigation skills. The goal of 

the research was to create an SDB algorithm that could be used in very complex turbid 

environments with some degree of accuracy. This could aid in charting relatively large 

and remote shallow water areas without sacrificing life or resources. INCOIS-

SATCORE data and high-density bathymetric data from NHO were used to achieve 

this, providing a rare opportunity to find alternative solutions to existing SDB models 

that are based on fewer, sparsely distributed parameters, with the potential to establish 

robust models over variable shallow waters.  

The required satellite imagery Landsat satellite data (Landsat-5-8) temporally 

proximal to INCOIS SATCORE data collected during 2008 to 2017 for validation of 

OAS was downloaded from USGS earth explorer with filter of date and less than 10 

percent cloud coverage. The imagery with glint were avoided for further processing. 

The next step in the process of developing Algorithm was delineation of water region 

using NIR band of satellite data. The pre-processing has been carried using the 

ACOLITE open-source module. The comparative analysis of most cited SDB model 

with ML algorithm using single spectral band as well as multispectral satellite data 
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was carried in exploratory study. The exploratory study proved the efficacy of RF 

machine learning algorithm as in comparison to any other SDB model in complex and 

more turbid water of Vengurla and Mormugao with MS bands. The OAS, Satellite 

bands in visual spectrum with bathymetry were used in further processing by predictor 

analysis of variables. The study on preliminary analysis of OAS by the predictor 

-7 & 8, 

Chlorophyll, TSM, and Turbidity are vital variables in bathymetry estimation. The 

three algorithms for Chlorophyll- Molkov et al., 2019; TSM- Molkov et al., 2019; and 

Turbidity-Nechad et al., 2009 have been used to derived OAS from the same satellite 

imagery used for SDB. The processing was carried out separately for raster data in 

ENMAPBox plugin of QGIS and using Jupyter Notebook python IDL for .csv data. 

The resultant RF algorithm were saved as .pkl file and then the merging of algorithm 

was carried using python script. All raster dataset was also extracted in .csv format for 

creating an algorithm based on merged dataset of 5 test sites. The final MRF 

algorithms has been cross-validated in different geographical areas with reasonable 

accuracy. The SDB derivation in a vast region of 100 Sq Km to 1400 Sq. km is rare in 

SDB which has been achieved. Besides, this study has applied SDB derivation up to 

depth of 90 m with reasonable accuracy in Gopalpur site. A generic Merged RF 

algorithm for recursive bathymetry mapping in coastal region of India has been tested 

and validated. A generic Merged RF algorithm which includes three additional 

parameters; TSM, Chl, & Turbidity derived from the same satellite imagery for 

recursive SDB is proposed, tested & validated in different coastal region of India. 
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CHAPTER 1: INTRODUCTION 

 

This chapter in its initial sections introduces the general overview of the coastal 

region of states, its significance in the Blue Economy, and the importance of 

Geographic Information Systems & Remote sensing in the development of the coastal 

region. Thereafter the next section discusses the motivation for selecting this topic for 

research in this study. The further section elaborates on the objective of the research, 

an overview of methodological procedures, and finally the contribution of this 

research in the domain of knowledge has been discussed. 

 

1.1  GENERAL OVERVIEW 

Coastal regions are home to more than 40% of the world's population. The coastal 

zone is important for many reasons, such as navigation, coastal life, coastal 

morphology, etc. Sustainable use of marine resources, food provision for over-stretch 

coastal areas, and continuous monitoring of the oceans are among the priority areas 

set by the United Nations Oceans Decade 2021-2030 Program set forth by the United 

Nations (Ryabinin et al., 2019). The growth of the green economy of any country 

depends mainly on the coastal regions. However, it is a very surprising fact that 

modern technologies have evolved to map the surface of Mars and the moon better 

than mapping the hydrosphere of the Earth. More than 80% of the Earth's seafloor 

remains unexplored. Although, over the past 5 decades, satellites have provided us 

with a glimpse of the ocean's surface, helping us to measure temperature, wind, and 

various meteorological phenomena very accurately. Several Ocean Color Monitoring 

(OCM) satellites provide continuous observations of the ocean by estimating water 

quality indicators like chlorophyll, SST, ocean color, waves, salinity, wind, etc., and 

offer several derivative operating products. But even today, the big challenge is 

looking deep into the sea and mapping its representation in three dimensions (Purkis 

& Chirayath, 2022). 

Knowledge of water mass mapping lies within the field of hydrography. 

Charts are the product of hydrographic surveys to satisfy maritime needs and are 



2 
 

therefore essential to more than 95% of the commerce of any country. A chart 

(electronic navigational chart or paper chart) is a cartographic representation of an 

area's depth, and navigational hazards, and an important support for navigational 

information gathered during navigation. hydrographic survey. Hydrographic surveys 

use two different methods, the SBES and the MBES to determine the depth and 

topography of the seabed. Recently, several emerging technologies are used to 

measure the depth of the water masses. This technology includes LIDAR, the use of 

ROV, and AUV to determine effective depth in coastal waters. All of these techniques 

are very expensive due to high purchase and maintenance costs, and limited repetitive 

and frequent readings. In addition, there is a risk of life and loss of resources in 

complex traffic areas such as tidal estuaries, coves, and complex reefs.  

Remote sensing as well as GIS techniques are widely used for studies of coastal 

regions because of their advantages of reproducibility, multispectral, and 

generalizability. Satellite-derived depth measurement has been studied for four 

decades, but its application in marine navigation is still lacking due to accuracy 

limitations. Although SDB was developed in the late 1970s, it hardly had any 

application in operational-depth research until the last decade. contemporary advances 

in satellite or space technology in terms of resolution, multi-spectral band, open-

source availability, etc. enhance its potential for use as a source of hydrological data. 

The use of satellite data is increasing throughout hydrology as a low-cost data source 

for coastline delineation. It is currently being accepted not only as an operational 

probe but also as an advanced technique capable of providing navigators with 

calibrated and confirmed depths with the use of very few resources.  

Several SDB algorithms have been developed to date, but only a few have been 

validated in different geographic regions. Adding to the complexity, very few 

algorithms have been reported to be usable in turbid water and this is one of the future 

challenges that need to be addressed with satellite imagery (Purkis & Chirayath, 

2022). Among the two mainstream approaches in SDB, one is an analytic approach 

that depends upon two or more water column variables, and the other is an empirical 

approach using sparsely distributed depth samples to establish an empirical 

relationship between the reflectance and the corresponding depth point. Several 

studies have discussed the fusion of analytical and empirical methods as a semi-

analytic approach, which also has some inherent limitations. This study aims to fill a 

research gap by combining analytical and experimental SDB methods based on high-
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resolution data related to water column parameters and high-density In-situ 

bathymetry applied to high-resolution Satellite data via machine learning. 

 

1.2 MOTIVATION  

This work envisages validating the practicality of SDB based on Satellite Data and 

Machine Learning algorithms. The high-density in-situ data has the potential to 

establish a new improved model to estimate depths in complex highly turbid areas. 

The goal of this research is to develop an improved algorithm of SDB so that it has 

utility in operational maritime capabilities in navigation.  

i) The motivation of the research is to develop an algorithm of SDB that can 

be employed with reasonable accuracy in highly complex turbid areas. 

This may help in charting relatively large and remote shallow water areas 

without compromising with loss of life and resources. 

ii) The availability of the Indian National Centre for Ocean Information 

Services (INCOIS) project namely Satellite Coastal and Oceanographic 

Research  (SATCORE) data and high-density bathymetric data provides a 

rare opportunity to find alternative solutions to existing SDB models 

which are based on fewer, sparsely distributed parameters, thereby having 

the potential to establish robust model over variable shallow waters. 

iii) Providing low-cost resources for nautical charting as an alternative to 

high-cost hydrographic surveying to establish high-density data in coastal 

regions of India up to the maximum achievable depth in shallow water 

regions.  

iv) Overcoming the challenges of shallow waters SDB where creeks and 

estuaries, huge hidden reefs, tidal bores, and surge occurs. 

v) Envisage to improve relatively accurate and reliable bathymetry by 

multispectral images that may be applied to Sediment transport, dredging, 

coastal engineering (port, constructions, etc.), Coastal fisheries and 

aquaculture, Coastal Tourism, and exploratory studies. Also, Addressing 

the Data gaps in existing bathymetry data, Reconnaissance of previous 

surveys, and Change detection and mapping. 
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1.3 OBJECTIVES 

The present study has the following objectives to be considered to derive operational 

SDB. 

1) Analysis of existing SDB algorithms in varying coastal regions of India. 

2) Determining the best-suited machine learning algorithm in complex coastal 

turbid water. 

3) Deriving the relationship between SATCORE parameters & reflectance of 

satellite data to develop the empirical model by empirical analysis. 

4) Developing SDB model based on the remote sensing reflectance and 

SATCORE data through machine learning algorithm and its validation 

The results will be compiled to elaborate on the procedures to operationalize the SDB 

model for nautical charting.   

 

1.4 OVERVIEW OF RESEARCH  

The literature has been reviewed for the past 5 decades in the SDB field. Variables 

such as depth, sensor resolutions, and also the dynamics of inherent coastal optical 

properties (IOPs) are some barriers to performing comparative analysis as per 

previous studies. A systematic framework for classifying SDB studies over the past 5 

decades has been proposed based on a literature review of previous studies. This study 

also identifies areas for additional SDB research where there are obvious hurdles and 

knowledge gaps. The recent increase in SDB research has concentrated primarily on 

shallow water depth estimate, which faces numerous difficulties because confounding 

variables are dynamic and active models for coastal areas must be developed. 
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Figure 1.1- Overview of Research 

The exploratory portion of the study includes an assessment of satellite imagery 

suitable for obtaining the SDB of the study area characterized by turbidity and 

complexity. To achieve this goal, several commonly used SDB algorithms were used 

to generate SDB. The techniques included; i) Log Ratio algorithm (Stumpf et al., 

2003); ii) log-linear models (Lyzenga et al., 2006); and iii) The tools in the Envi 5.3 

suite SDB measurement model, SPEAR (Spectral Processing Mining and Analysis 

Software) use the Log Scale algorithm. In addition, ML techniques which include, 

Linear regression, RF regressor, and SVR were evaluated to obtain SDB using the 

high-resolution satellite data. 

The above stages have proven the superiority of ML over traditional 

algorithms. In the next step, the performance of univariate ML methods viz. i) Linear, 

ii) Robust Linear, and iii) non-linear ML algorithms in SDB derivation using 

LANDSAT-8, ASTER, & SENTINEL-2A spectral bands and two different high-

resolution in-situ bathymetric datasets of turbid water (Ashphaq et al., 2022). A 

univariate technique was used based on the SDB literature as most existing studies 

recommend a wavelength band of 0.5 estimating SDB in coastal waters 

(Stumpf et al., 2003). We examined the depth-dependent reflectance for spectral 

bands and computed empirical correlations between remotely sensed reflectance and 

satellite bands. The selected study sites were heterogeneous as well as navigably 

Stage-6 MRF Model of SDB

Stage-5 Impact of OAS CHl, Turbidity, and TSM on SDB

Stage-4 Analysis of OAS on SDB

Stage-3 Multivariate ML approach for SDB estimation

Stage-2 Univariate Analysis of SDB using ML approach

Stage-1 Analysis of SDB in complex turbid water
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complex, so LR, three Robust LR, and nonlinear GPR algorithms were compared for 

SDB estimation. 

This study then evaluated the effectiveness of the SDB method using 

multivariate ML regression techniques. The goal of this phase was to validate the use 

of several ML regression algorithms for SDB and investigate the most appropriate 

techniques for predicting his SDB for multivariate dependent variables. This phase 

demonstrates multivariate ML regression techniques MLR, GPR, MARS, DTR, DTR-

K, and RF at two different sites using three satellite datasets and high-resolution in-

situ bathymetry. 

Based on the accuracy of results achieved in previous phases, identifying 

variables that limit the use of a single scene for deriving SDBs across coverage areas, 

or different remote sensing reflections for different images of different dates were 

considered essential to variations in the IOP of the water column. To study this, we 

used coastal seawater longitudinal data, remote sensing reflectance data, and 

bathymetric data provided by the INCOIS-SATCORE project to study the relationship 

between them. This study analyzed the relationship between bathymetry and each 

SATCORE parameter distribution in the study area. Regression modeling analyzed 

the causal relationship of the dependent variable 'bathymetric measurements' and the 

independent variables 'remote sensing reflectance', and OAS. 

Results from the last stage showed that bathymetric topography only affected 

the spatial distribution of chlorophyll, TSM, as well as turbidity in coastal waters. 

Therefore, the goal of the next step was to improve the accuracy of SDB by 

understanding the spatial distribution of chlorophyll, total suspended solids, and 

turbidity of the coastal waters. At this stage, a preliminary survey was conducted 

using numerical analysis between Landsat 7 and 8 spectral bands, OAS parameters, 

and bathymetry. SDB was derived using three machine learning algorithms. Linear, 

RF, and SVM regression. The resulting SDS residues were analyzed for chlorophyll, 

turbidity, and TSM in coastal seawater. In this study, we found that most of the 

erroneous SDB residuals and peaks were distributed in high- or medium-rich OAS 

regions. The results of this study pave the way for further improving the accuracy of 

SDB estimation by considering the above three OAS effects in coastal waters. 

The RF-SDB model showed considerable accuracy in deriving SDB at the last 

stage. Further evaluation of the algorithm in SDB estimation in different scenes is 

necessary to demonstrate the robustness of the practical model. Results from previous 
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research stages showed that most of the erroneous SDB residuals and extremes were 

distributed in high- or medium-enriched OAS regions. Therefore, the three OAS Chl, 

TSM, and turbidity were included in further data processing to improve the accuracy 

of the SDB estimation by considering the effects of the above three OAS in coastal 

waters. The aim is to develop a more robust predictive SDB model for practical 

application by merging algorithms developed at different sites and datasets from all 

sites to derive the Merged RF algorithm. Validation and cross-validation were 

performed and performance evaluations were elaborated using in situ and bathymetry 

maps derived from the GEBCO database. 

 

1.5 CONTRIBUTION OF RESEARCH 
This study has contributed to the SDB domain in several ways as follows:  

1. Firstly, the study examined the contemporary, most cited SDB model with ML 

algorithm using single spectral band as well as multispectral satellite data.  

2. The study proved the efficacy of ML algorithms compared to other SDB models 

in highly complex and very turbid water in the study site of Vengurla Rocks.  

3. Further, the study has compared several ML algorithms for SDB derivation, and 

based on higher efficiency, the less time-consuming and computationally 

extensive model was suggested.  

4. This study was one of the pioneering efforts in examining the role of OAS on 

SDB derivation.  

5. The first time in SDB such vast longitudinal data was used for preliminary 

analysis of OAS on SDB.  

6. The INCOIS SATCORE data have been collected from 2008 to 2016 and have 

been shared for the research to identify the moderating or mediating effect of 

OAS on SDB derivation. This data has been collected with the use of great 

amounts of effort and huge resources.  

7. The study on preliminary analysis of OAS concluded only three parameters in 

the water column have an effect on SDB derivation and the same were used in 

further processing.  

8. The SDB derivation for such a vast region of 100 Sq Km to 1400 Sq. km is rare 

in SDB, Besides, this study has applied SDB derivation up to a depth of 90 m 

with reasonable accuracy in the Gopalpur site.  
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9. A generic Merged RF algorithm which included three additional parameters 

Chl, TSM, and Turbidity derived from the same imagery was developed, tested, 

and validated for recursive bathymetry mapping in the coastal region of India.  

 
1.6 OUTLINE OF THESIS CHAPTERS 
The thesis is compiled into six chapters wherein each chapter comprises of Section, 

subsection, and paragraphs. The First Chapter INTRODUCTION briefly introduces 

the importance of bathymetry, the need for research on SDB, motivation for 

undertaking this study. This chapter also provides an overall summary of the research 

work. The second chapter LITERATURE REVIEW provides the importance of 

Satellite Oceanography in Blue Economy development and the chronological progress 

of SDB studies. This chapter also introduces all important theories, approaches, 

models, methods, and techniques in SDB.  The chapter provides details of literature 

progressively from Western to Indian studies chronologically. The third Chapter 

MATERIALS AND METHODS includes details of Study Sites at various stages of 

research, Data used in the study, Pre-processing steps from Atmospheric correction to 

Surface reflectance used in this study, and Performance Evaluation matrices used in 

this study. Further, this chapter includes details of various stages of research. The 

fourth chapter RESULT provides details of all the stages of research. All the results of 

transforms & algorithms have been shown in the form of tabular data as well as 

resultant bathymetric maps. The fifth chapter DISCUSSION explains the performance 

evaluation of retrieval ML algorithms of SDB, validation of chlorophyll, TSM, & 

Turbidity and their relationship with SDB retrieval, and the development of a Merged 

RF model for SDB. The Sixth chapter is the summary and conclusion chapter. This is 

followed by References and additional appendices which include the syntax of 

various ML algorithms used in this study. 
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CHAPTER 2:  LITERATURE REVIEW 

 

The potential of the Blue Economy has been widely discussed over the past decade 

for the country's economic growth, improving resource use, creating livelihoods, and 

protecting oceans through sustainable use consistent with the goals of the United 

Nations Ocean Decade (Lecours et al., 2022). Satellite oceanography for a sustainable 

Blue Economy has been studied for the past five decades. The space technology boom 

of the past decade for coastal regions has been fuelled by new high-resolution satellite 

sensors and advances in the processing capabilities of modern-generation computers, 

especially in applying machine learning algorithms to large amounts of geospatial 

data. Extensive data processing capabilities give the advantage of aggregating existing 

knowledge across multiple domains into a unified approach that can drive the blue 

economy through accurate depth prediction, estimation column parameter and bottom 

composition as well as derivatives based on WQP. Advances in recent years have 

strengthened the prospect of more accurate, real-time products based on satellite 

oceanography. However, relatively few applications have been operated based solely 

on satellite oceanographic data due to the barriers of on-site data to validation and 

limitations caused by sensors and techniques in coastal waters. 

 

2.1 SPACE TECHNOLOGY & BLUE ECONOMY 

Recent satellite oceanographic studies on the recovery of WQPs, their application in 

Blue Economic activities and the various challenges in creating WQPs for a 

sustainable blue economy, mapping Habitats and other coastal applications were 

reviewed to identify knowledge gaps and challenges. Areas of opportunity such as 

diving operations, military applications, etc., where less theoretical knowledge is 

available, are analyzed based on the WQP relationship. It is seen that the need to 

integrate data from various sources is emerging, to overcome the challenges and 

limitations of WQP retrieval to operate blue economic products. 

Advances in satellite oceanography over the past few years have reinforced 

the prospect of more accurate, real-time, and operational products for a thriving blue 

economy. Various national and international agencies have identified the need to 

converge data from multiple sources into a unified database to improve the 

availability and sharing of marine data with all end users. Satellite oceanography has 
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the potential to provide products that are sourced, even to any remote location in the 

world. Spatial variability along coastlines, monitoring of complex and dynamic 

estuarine systems, and management of navigable harbour channels require immediate 

attention to data integration. This section discussed coastal water remote sensing 

theory and its application areas, including some lesser-known applications such as 

diving operations, depth measurement and detection of small/large objects in the 

incident area. 

Ocean color sensors mostly have a coarse spatial resolution, making them 

unsuitable for coastal, estuarine, and estuarine regions. Ground-based sensors with 

higher spatial resolution are used to overcome spatial resolution issues, but the 

resolution is low. The highly variable optical properties of coastal waters complicate 

the distinction between and within water bodies based on varying concentrations of 

sediment and plankton. The ability to estimate phytoplankton size, type, and 

physiology from remote sensing data is relatively underdeveloped, and many methods 

are still not widely validated. Coastal areas, especially in bays, inlets and estuaries, 

have less geographic coverage/width. The coarse resolution of HS sensors is below 

the spatial detection of single pixels. Most of the shoreline detection & delineation 

methods use on-the-shelf commercial tools making techniques accessible to only a 

few. The progress of automated procedures for shoreline detection & delineation is in 

its infancy and needs further development. The existing algorithms and methods are 

limited to specific satellites, and common algorithms are not available independent of 

the application or image. Thus, efforts are needed in the direction of complete 

automation applied to very high-resolution satellite imagery to get relevant products 

for the blue economy. 

The contemporary literature reveals the surge in studies focusing on satellite 

oceanography or coastal water remote sensing in the last decade. However, several 

challenges are apparent in developing operational products for coastal regions for the 

reason of the dynamic variables of the water column. The synergy of the existing 

knowledge established from the research of the last four decades to create operational 

products for coastal regions demonstrates efficacy to provide appropriate and precise 

information for a sophisticated operation in ports & harbours, navigable channels, 

creeks, estuaries, and sensitive marine parks & protected areas. Coastal water remote 

sensing is highly dependent on the retrieval of WQP and application areas. 

Bathymetry retrieval and its relationship to WQP have been one of the unexplored 
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areas of research in this domain. A further literature review is guided by focusing on 

different bands, different algorithms, and a detailed discussion of RT equations, 

variables and their estimation by several researchers. Along with this, research has 

also highlighted research areas having challenges and substantial knowledge-gap 

existence for a sustainable and prosperous blue economy. 

 

2.2 SATELLITE DERIVED BATHYMETRY  

Accurate bathymetry information is crucial for a variety of applications, including 

maritime navigation, harbour construction, the laying of underwater cables and pipes, 

and more. In coastal areas, socio-economic activities like fishing, maritime trade and 

transport, tourism, coastal aquaculture, offshore exploration, experimental exploration 

of alternative renewable energy, marine ecosystems, and such other applications have 

grown over the past decade, which require bathymetry information primarily. 

Bathymetric mapping also has wide application in evaluating coastal processes, which 

include sea-level changes, littoral drift, erosion and accretion of shorelines, coastal 

vegetation and wetlands, sediment concentration, coastal currents, coastal habitats, 

etc. 

Bathymetric surveys mostly employ sonic echo-sounding technology to 

acquire data. Single Beam Echo Sounding (SBES), which offers less cover and spatial 

resolution, wherein Multi Beam Echo Sounding (MBES) has wide coverage and 

completely insonifies the region, are the two methods used for acoustic echo-

sounding. MBES also depicts undersea topography. The bathymetry of the ocean is 

now being determined using a variety of contemporary methods, viz. LIDAR, ROVs 

and AUVs (fitted with SBES, MBES, and or LIDAR) for accurate depth estimation in 

coastal areas. The substantial operational costs of hydrographic surveying prevent 

them from being repeated and very routine and frequent in any region of interest. Due 

to the risk to human life and material damage, conducting hydrographic surveys in 

certain isolated regions, such as large hidden reefs, and estuaries, tidal bores & surge 

zones, is extremely difficult.  

The purpose of the study is to objectively evaluate the applicability and flaws 

of the evolution of SDB algorithms during the past fifty years. Based on statistical, 

bio-optical, and physio-optical properties, algorithms have been classified. The 

purpose of this literature review is to demonstrate the applicability of SDB algorithms 

in various coastal areas. 
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2.2.1 SDB Methods 

SDB is among the possible options that have been examined for the past 50 years and 

successfully offer a crucial answer to coastal regions that are characterised by rapid 

changes in the bottom and complicated terrain (Ashphaq, Srivastava, & Mitra, 2021). 

However, depending on already-existing in-situ bathymetric data, these approaches 

have the potential to produce outcomes. The SDB Method was created to estimate 

SDB from optical RS data utilising the concepts of underwater reflectance, and 

underwater optics (Polcyn, 1969 & Colleagues). In sites where high energy waves 

occur with a number of limiting criteria like the swell magnitude, and interaction 

between swell & sea waves, synthetic aperture radar data is utilised to estimate coastal 

bathymetry. 

Despite the SAR dataset having a modest resolution & coverage, obtaining the 

necessary input parameter and putting an algorithm into practice are difficult tasks. In 

shallow coastal seas, this method is unreliable (Wiehle et al., 2019). Another team of 

researchers developed a lesser-resolution bathymetry of the seabed using satellite 

altimeter readings and sparse in-situ bathymetry. For use in coastal locations, the 

satellite altimetry dataset has comparably extremely poor accuracy & resolution 

(Smith & Sandwell, 2004). The capacity to map the topography of the seabed has 

significantly improved because of the advent of high-resolution optical sensors and 

advancements in algorithms. Over the last 50 years, several researchers have 

employed optical data in developing algorithms. The current techniques for 

hydrographic survey and SDB are listed in Table 1 below, with each technique's 

reasonable depth, precision, robustness, and restrictions shown. 
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2.2.2 Optical SDB 

SDB depends upon radiant energy reflected from the visible spectrum of the EMR, 

and its intensity decreases with the depth because of the IOP of the coastal water 

column. Signal attenuation caused by the atmosphere, the characteristics of the water 

column, the characteristics of the bottom, and the depth of the water are some of the 

confounding variables that restrict reflectance. The fundamental idea behind remote 

sensing techniques is to use known values, which are approximately gathered through 

field observations, to identify the majority of the unknown parameters. To calculate 

the water depth, we need to find values for a few unknown parameters. One way of 

doing this is by using optical bandwidth as found in work done by Polcyn and Rollin 

back in 1969. Another method developed at around the same time was based on 

reflection rates within two spectral bands of visible light Polcyn & Rollin, (1969). 

This has been followed up with more recent research that aims to reduce the number 

of variables needed for an accurate estimation. Experimental methods have also 

continued playing an important role in SDB studies over the years, allowing us to get 

closer and closer towards solving its mysteries. 
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In order to accurately measure the water column and depths below, a new 

method was developed by Lee et al., (1998). This system involves measuring both the 

depth and IOPs. Over the past decade, research has been devoted to correlating these 

parameters with one another. A large database of marine IOPs and oceanographic data 

has also been collected, making it possible for more accurate measurements in the 

future. In addition to LUT techniques that have recently emerged, this information 

will help us better understand how our environment is changing over time. The 

development of powerful computers with large data processing and storage 

capabilities has led to the application of ML algorithms in SDB. In addition, this 

technology has also introduced a number of ML techniques into the world of database 

management. 

 

2.2.3 SDB Algorithms 

The literature on SDB for almost five decades is classified mainly based on the 

method to estimate SDB derivative coefficients in analytical, SA and experimental 

methods (Jawak et al., 2015; Misra et al., 2018; Traganos et al., 2018). Others have 

mentioned similar studies under the classification of physical or statistical-based 

methods (Dekker et al., 2011). In addition, similar studies were referenced differently 

among the above categories depending on the search context. SDB experts, especially 

from technical backgrounds, regularly and interchangeably employed phrases such as 

approach, tool, method, technique, & model without comprehending the philosophical 

worldview behind these concepts (Ashphaq et al., 2021). Despite the great differences 

between these terms, none of them have an advantage over the others but relate to 

completely different purposes, have distinct meanings, and should be used 

consistently in an appropriate way. To systematically categorise any issue, attention 

should be made to the topic's specifics and agreement among stakeholders for the 

appropriate application of the requirements. Based on the extant literature on SDB 

during the last five decades, this article provides an overview of the SDB 

classification based on the research philosophy. 

 

2.2.4 SDB Classification 

In language learning theories, Anthony (1963) separated the words method, approach, 

and technique. The word approach refers to the underlying philosophy or ideology 
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associated with a certain objective that focuses on addressing a problem about the set 

of assumptions inferred from a group of theories and concepts (Andiappan & Kin, 

2020). The SDB literature primarily discusses two approaches; i) statistical which 

unconsidered the physical characteristics for light transmission in the water and 

optical properties features of the water column, is used to determine the relationship 

between Rrs and bathymetry measurements; and ii) physical properties-based 

emphasizing propagation of light in the water column and also attenuation of light 

caused by water column composition and other environmental factors.  

A model specifies a broad conceptual framework or approach to problem-

solving. When describing a model as a collection of approaches utilised in accordance 

with predetermined principles, the terms methodology and framework are sometimes 

used interchangeably. The better the reasonableness in determining a sample, the 

more accurate a method is chosen. The physics-based RT approach can be of two 

categories: the bio-optical model & the optical-physical model. The bio-optical model 

is predicated on the idea that the optical properties are primarily controlled by 

biological substances in the water column, particularly phytoplankton & also its 

derivatives (Smith and Baker, 1977), whereas the other model explains the reflectivity 

of RS as a function of depth, water quality, and bottom reflectance (Lee et al., 1999; 

Hedley et al., 2009). 

A method is a description of an actual approach to problem-solving. Empirical 

methods, which include a variety of statistical techniques, can be used to implement 

statistical methods, which are very straightforward. Semi-empirical (SE) and 

analytical approaches can be used to carry out optical-physical and bio-optical models 

in this context. The empirical validation of converted data to field data is used in the 

SE, which explicitly assumes light's RT and also its attenuation in the medium it is 

propagating. For the RT of light in a body of water, analytical methods are physics-

based algorithms based solely on the photo-physiological-biological properties of the 

water components. However, when applied in practice, the analytical method has been 

regarded as a difficult and complex problem (Werdell et al., 2018). Several theoretical 

assumptions have been used to address the limitations and complexity of analytical 

methods. These assumptions divide analytical methods into semi-analytical (SA) and 

analytical methods QA). Lee et al. (1998; 1999), developed the SA methods, and 

transformed (Maritorena, Morel, & Gentili, 1994; Mobley, 1994) using the optical 

properties in the analytical RT equation using spectral fusion without topographic 
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data, on column depth d and seafloor reflectivity as a function of water backscatter 

and light absorption properties. Among other scientists, the QA method was created 

by Lee, Carder, an

deteriorated into phytoplankton take-  g), and 

backscatter coefficient bb, given the connection between far off regions utilizing the 

RT radiation equation to identify water reflection and IOP. 

According to Andiappan & Kin (2020), the technique is a series of actions 

taken to observe and measure phenomena as well as the collection, processing, and 

analysis of data regarding the outcome. In any case, not all issues should be settled in 

each class, consequently proposing a "Hybrid of a methodology, model, strategy or 

procedure. As a result, it has been suggested to group studies on SDB according to the 

diagram in Figure 2.1, which explains how the aforementioned concepts relate to 

SDB. 
  

 
Figure 2. 1: SDB Classification Conceptual Framework 

 

2.3 OPTICAL SDB APPROACH 

2.3.1 Statistical Approach 

Estimates, or coefficients of determination, for the same satellite imagery from which 

they are drawn, are the primary objective of a statistical method that is based on a 

statistical relationship. This relationship does not take environmental, spectral, or 

radiometric parameters into account. The accuracy of statistical methods solely 

depends on the data on which the statistical coefficients are based or the physical 
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model from which they are trained. The ease with which statistical methods can be 

used, the availability of tools for data processing and analysis, and recent 

advancements in advanced machine learning techniques have increased processing 

efficiency are the main benefits. According to Dörnhöfer & Oppelt (2016), the 

limitations include the requirement of on-site data, the specific adaptation to the same 

image and location, and the difficulty of porting to other locations. Few studies have 

used "spatial transfer" (applying empirical methods to other neighbouring locations) 

and "temporary transfer" (different times of ground data acquisition on the same study 

site) for SDB studies (Danilo & Melgani, 2019). 

 

2.3.2 Radiative Transfer Approach 

The radiative Transfer (Physics-based) approach is based upon the exponential 

attenuation of EMR or light with an increasing water depth of the water column and 

also its reflection either from the bottom or water column (Bramante, Raju, and Sin, 

2013). Blue and green are often the bands chosen for SDB since they have the lowest 

light absorption rates. The physical attributes of spectra, the water column, and 

environmental factors, including Chl concentration, TSM, the concentration of 

turbidity, spectral shape, absorption & backscatter coefficients, and depth, may all be 

estimated and interpreted using physics-based methods (Brando et al., 2009). 

Estimating the physical factors that influence spectrum observations, whether they 

include or exclude in-situ data, is the intrinsic strength of physics-based techniques. 

Though difficult to execute realistically, physics-based methods of RT are known as 

complicated mathematical problems (Mouw et al., 2015). Additionally, in order to 

explain the simulated link, RT physics-based techniques need an in-depth theoretical 

understanding of unaccounted-for components.  

Therefore, the use of physics-based RT techniques should only be promoted in 

the presence of complete knowledge of the biological and physical processes 

occurring in water. Beer's Law is theoretically used to describe the intensity of 

radiation dispersed and absorbed by water, leading to a physics-based approach to 

SDB. Since then, several methods for estimating SDB have been created under the 

names of physics-based models or bio-optical models. 

 



18 
 

2.3.3 Models in RT Approach  

Under two separate but complementary sets of assumptions for reflection data, a 

physics-based approach is used. The first, known as the bio-optical model based on 

the concept that the optical characteristics of water are governed by biological 

substances in the water column, especially phytoplankton as well as its other 

derivatives (Smith and Baker 1977). It employs a forward model that explains Rrs as 

a consequence of water condition, depth of waterbody, and bottom reflection and 

yields depth estimations when inverted (Lee et al., 1999; Hedley et al., 2009). 

 

2.3.3.1 Physio-Optical Models 

Sir Rayleigh (1899) proposed a theory that diffuse reflection, as well as transmission 

of sunlight, causes molecular scattering in the atmosphere. However, Chandrasekhar 

(1950) gave a solution to the Rayleigh issue in the book RT (Suomi & Haar, 1970). 

Chandrasekhar defined "RT" as the mathematical solving of RT equations in 

absorbing, emitting, and scattering media. RT theory, which is the most extensively 

used approach for reliably extracting features of the Earth and atmosphere from 

satellite data, gives the justification for causal links between data received by 

instrument sensors and the physical course that created the signals. It has evolved into 

a useful tool.  The scattering behaviour of RT theory in different transmission media 

and its representation of the RT equation in solution techniques used for atmospheric 

adjustments, studies of airborne particulate matter and clouds, water bodies, flora, etc. 

have all been the subject of many types of research. 

 

2.3.3.2 Bio Optical Model  

The term "bio-optical" was used by Smith and Baker (1977) to describe the within-

water optical state which is primarily influenced by the optical characteristics of the 

biological components (Chl, plankton, sediments, etc.) in the water column. Since the 

term has been applied to describe bio-optical models in a variety of ways 

(Ogashawara, 2015). Radiometric variables IOPs & AOPs such as downwelling as 

well as upwelling spectrum irradiance as well as the absorption & scattering 

characteristics of components of the water column are the foundation of bio-optical 

models. These spectrum features may be quantified numerically and calculated at an 

individual cell level (using physical variables like cell, dispersion size, chemical 
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composition, etc.) (Morel, 2001). The very first bio-optical model developed 

correlations between the AOPs & IOPs of water using a Monte Carlo simulation for 

each RT equation. The wide and inconsistent use -

was also highlighted (Ogashawara, 2015). Such models are dependent upon 

radiometric quantities like IOPs and AOPs, such as the downward and upward 

spectral irradiance as well as the absorption and scattering properties of elements in 

the water column (Ashphaq et al., 2021). These spectral features can be defined at the 

level of a cell (using physical structures such as cell size, size distribution, chemical 

composition, etc.) amount for that population of cells (Morel, 2001).  

 

2.4 SDB METHODS 

Wherein, SE & analytical methods may be implemented in the Bio-optical model and 

the Physio-optical model, respectively. The SE techniques calibrate field data 

empirically which has been converted and is dependent on the explicit assumption of 

RT and attenuation of it through the propagating medium. Analytical approaches 

presume algorithms based only on the bio-physio-optical characteristics of water 

components and solely grounded in the physics of RT of light inside a water body 

(Ashphaq et al., 2021). However, the analytical approach has been viewed as a 

contentious mathematical topic that is difficult to implement practically (Mouw et al., 

2015; Werdell et al., 2018). Few theoretical presumptions, based on that analytical 

techniques get divided into SA & QA Methods, addressed these analytical method 

limits and complexity issues. The development of SA techniques may be credited to 

Lee et al. (1998; 1999), who adapted the analytical RT equation (Maritorena et al., 

1994) to determine the optical properties, water depth, and seafloor reflectance based 

on the water absorption & light-scattering characteristics without the requirement for 

field data. Lee, Carder, and Arnone (2002) developed the QA method to derive total 

absorption and back-scattered coefficients, depending on interactions between Rrs 

with the IOPs for a given column of water by application of the RT equation. 

 

2.4.1 Empirical SDB 

According to Ashphaq et al., (2021), the statistical estimators developed from ground 

truthing data are the single basis for empirical approaches. A dataset of ground 

observations and reflectance values of suitable bands from satellite photography is 
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used to construct the empirical method. Without taking into account physio-optical 

characteristics, the empirical approach estimates the strongest possible relationship 

among the reflectance and other parameters of interest using techniques like linear 

regression, least squares, non-linear regression, maximum likelihood, neural 

networks, etc. These algorithms have the benefit of processing vast volumes of data 

quickly, easily, and efficiently. After reviewing a number of empirical researches on 

remote sensing in coastal waters, Matthews (2011) concluded that, if one is willing to 

accept a significant level of error, empirical approaches can yield a great deal of 

useful information. Empirical methods are site-specific and time-dependent since they 

are based on the premise that optically homogenous surroundings exist in a single 

scene. But empirical techniques utilising ML and multitemporal data have assisted in 

overcoming these restrictions (Salameh et al., 2019). Below is a discussion of 

significant empirical method-based strategies used in SDB investigations. 

 

2.4.1.1 SDB Techniques: Empirical 

The majority of empirical approaches use regression tools to analyse data utilising 

spectral values from one or more bands along with ground-truthing data to determine 

the coefficients parameters of regression. Although regression approaches have been 

seen to be the utmost practical answer to large dataset processing, they may lead to 

algorithm results failure in areas with varying seabed conditions (Doxani et al. 2012). 

Gao, (2009) reported that regression resulted in coefficients worsening in 

heterogeneous bottom types; consequently, a new regression technique needs to be 

created for individual bottom types comprising different natures of bottom and 

underwater flora of the region. 

Gao (2009) claims that mixed bottom types have worse regression 

coefficients; as a result, various regression algorithms may be created for each kind of 

bottom, which can include the vegetation and bottom characteristics of the location. 

Prior to using band ratio methods, the bathymetry and bottom in satellite pictures are 

classified using the supervised/unsupervised classification approaches, either alone or 

in a hybrid combination with SE. Clark, Fay, and Walker (1988) employed a 

supervised cluster and the maximum likelihood before using a band-ratio technique 

on clustered satellite datasets. They used this technique to identify the bathymetry, 

and spectral properties, of the seabed. This is a key concept of classification 

algorithms. After classification, statistical bathymetry variables from training areas 
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are used to calibrate the picture (Correa & Avila, 2002). Radiometric reflectance is 

divided into broad groups via unsupervised classification, which is then utilised to 

produce areas that may be regressed versus bathymetric measured data (Collet et al., 

2000; Correa 2002; Mavraeidopoulos et al., 2019). The effectiveness of grouping 

pixels into subgroups prior to applying the SDB algorithm has been determined by a 

number of unsupervised classification techniques, including (Poursanidis et al., 2019) 

Iso-Cluster unsupervised classification and K-Mean unsupervised classification 

(Geyman & Maloof, 2019). 

 Other methods include PCA, which correlates water depth using the first 

component and all three bands (transformed) (Gholamalifard et al., 2013). Mohamed 

et al. (2016) employed PCA to find SDB, and as in-situ water depths and the main 

components of the log-transformed reflectance had a linear relationship, this allowed 

for a superior SDB estimate. In a few investigations, SDB and seabed categorization 

were also calculated using Maximum Likelihood techniques (Zhou, 2011). Jay and 

Guillaume (2014) suggested a maximum-likelihood (non-stationary) estimate method 

for satellite bathymetry and water quality using HS data to achieve better results. SDB 

also employs a number of other empirical & image-based methods, including object-

based image analysis (Hedley et al., 2018). 

The results of a few empirical SDB research, the depth of the study area, and 

the satellite data utilised are shown below. 

 
Figure 2.2: Empirical SDB 

 

In the limited empirical studies, the effects of a few environmental confounding 

variables on SDB estimates have been considered. Tripathi & Rao (2002) researched 

the effect of turbidity on SDB using IRS-1D (LISS-III) Band 1 (0.52 - 0.59 nm) and 
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developed an adjustment feature called Turbidity Influence Factor  minimising 

inaccuracy. Although predicted SDB's RMSE was high, the Least Squares Regression 

method between band 1 reflectance with a water depth of 25 m generated a 

substantially high R2 of 0.97 when employing TIF. Mishra et al. (2004) studied 

bathymetry in Honduras for a lesser depth of 7 m but varying inconsistent bottom 

types using PCA on IKONOS data (seagrass, sand, and coral). They achieved an R2 

value of 0.90 and with a standard error of 0.64 m.  

Some researchers have equated strategies to find the finest appropriate 

algorithm developed to date for their study region. Four empirical methods were used 

with the Landsat TM dataset in the Alacranes Reef (Gulf of Mexico) for a depth range 

of 20 m: a linear regression with the first principal component, an MLR, a non-

supervised (two-step) classification with the MLR, and a supervised classification. 

The results show RMSE of 4.1 m, 3.8 m, 3.8 m, and 4.4 m, respectively, 

demonstrating that the two-step non-supervised yield low RMSE (Correa & Avila, 

2002). Using Landsat-8 data, Chen and Zhu (2015) investigated three empirical 

techniques to estimate SDB at Pratas Is. They concluded that regression was not 

robust due to significant outliers. 

The empirical findings indicate that SDB achieved by numerous studies have 

up to 60 percent accuracy at validation sites where RMSE is also less than 1 m, while 

some studies projected data have high errors and several of them have RMSE more or 

less about the depth of the region. This makes it obvious why empirical approaches to 

determining SDB have only occasionally been used. In addition, it is suggested that 

empirical approaches be used with caution in coastal turbid water due to larger errors 

based on research in the turbid region. 

 

2.4.1.2 SDB: Machine Learning 

With more flexibility in approaches to analyse enormous volumes of data, ML is 

becoming an extensively acknowledged tool for research used by scientists in remote 

sensing & GIS investigations. In research using remote sensing, machine learning has 

been widely accepted, particularly when processing temporal high-resolution spatial 

information or high-resolution ground truth data. In a pioneering study that applied 

machine learning to SDB, Ceyhun and Yalçin (2010) used the ANN ML algorithm to 

analyse ASTER & QUICKBIRD satellite data at Foca, Izmir, Turkey, where a depth 
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of 45 m, and they were able to derive substantially accurate SDB estimates with a 

coefficient of determination 0.80.  

With the use of the SVM technique, Eugenio et al. (2015) were able to get R2 

values between 0.93 & 0.94 and Residuals between 1.20 & 1.94 m for the coastal 

regions of the Canary Is. using World-View 2 data and WorldView-2 & WorldView-3 

data in Cape Rodney of New Zealand, Kibele & Shears (2016) applied non parametric 

ML technique nearest neighbour regression. They compared the results with the 

Lyzenga SDB model and showed that the KNN approach outperformed Lyzenga's 

methodology. ANN ML algorithm was used to analyze IRS-P6 (LISS-IV) in the 

murky water for a depth range of 12 m at Bhopal City Lower Lake, attaining R2 0.95 

and RMSE of 1.61 m. This demonstrated that ANN ML approaches can also be 

employed without further adjusting for confounding environmental variables like 

vegetation and bottom (Patel, Katiyar, & Prasad, 2016). A few studies are shown 

below that used ML algorithms techniques to analyse SDB, along with information on 

the techniques used and the results obtained. 

 

 
Figure 2.3: SDB using ML algorithms 

 
SDB of five ML has been compared by Hassan et al. (2017) which includes 

SVR, Neural Network, and the GLM of Lyzenga, using satellite data of Landsat-8 & 

Spot 6 at for depth range of 10.5 m three distinct sites at Alexandria port of Egypt; 

upto 6 m at Lake Nubia, and up to 14 m at Ishigaki Island, Japan. Misra et al. (2018) 

used the Non-linear SVM ML technique in shallow water at Maarten Is., Netherlands, 

at depths ranging from 1 to 15 m. The SVM algorithm performed better in shallow 
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murky water, with an R2 of 0.73. Another notable study was undertaken in 2019 by 

Sagawa et al., using multi-temporal Landsat images clustering 135 scenes at five 

different sites with depths ranging up to 20 m. The RMSE of the resultant SDB was 

found about 1.41 m in the five different regions. However, the derived SDB was in 

the different shallower water areas under highly open conditions. According to 

Dickens & Armstrong (2019) found that even SDB derived from deep learning 

approaches did not match IHO bathymetry standards when they used RNN to 376 

ORBVIEW-3 multi-temporal satellite images acquired at 3 distinct sites in the water 

depth of 25 m. 

The optimum band integration for SDB (1-4), according to Moein et al. 

(2019), has an RMSE & MAE of 1.25 m and 0.76 m, respectively, in the depth of 0-5 

m. Landsat 8 data at a depth of 0-20 m were used in this research. However, the 

measurement inaccuracy increased dramatically after 10 m. Therefore, it has been 

concluded that ML algorithms did show themselves to be superior to traditional 

empirical methodologies. The most common algorithms, SVM & RF, considerably 

yield SDB for depths range of 10 m, but increasing depth, inaccuracy upsurges 

exponentially. In addition, relatively limited researchers have used SDB derivation in 

shallow as well as turbid water. One of the newest areas of research in SDB is the 

development of operational SDB models, which has a significant amount of potential. 

 

2.4.2 Semi-Empirical SDB 

According to (Ashphaq et al., 2021) Many scholars have endeavoured to examine the 

analytical model for SDB, but prior to the early 1990s, their efforts mostly consisted 

of matching image pixels with concurrently obtained in-situ hydrographic data, with 

very little attention paid to other environmental, water column, and physical factors. 

Without sufficient ground data, the estimate of SDB to an accuracy level of near 

about 70 percent was made possible by the causal hypothesis of band-ratio 

(particularly the blue & green band) as a substitute for attenuation coefficients 

(Polcyn, 1969 and associates; Paredes & Spero, 1983).  

Similarly, other investigators proposed, even a single/unique band could be 

able to explain the exponential decrease of light under water if the disparity between a 

pixel's true radiance value and its deep water Rrs in the same imagery was 

transformed utilising logarithm function (Warne, 1978; Lyzenga, 1978). The log-
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linear transformation function optimally was extended to dual-band (Lyzenga, 1985; 

Clark et al., 1987) as well as multiband (Lyzenga et al., 2006) channels for increased 

SDB precision. The improved log-ratio transformation had first been presented by 

Stumpf, Holderied, and Sinclair (2003) for dual-band, and it was later updated for use 

with an integration of various distinct bands (Kabiri, 2017).  

RT approach increased the possibilities for using MS data for SDB evaluation 

by making an overt hypothesis (in empirical methods, the premise is intrinsic) in the 

model in which either Band-Ratio or Linear Regression Method were used to address 

exponential attenuation of EMR in water, minimizing the number of uncertain 

variables. 

 

2.4.2.1 Band Ratio SDB 

SDB Algorithm based upon Band Ratio approaches pioneered (Polcyn & 

Rollin, 1969) utilising 18-band data of MS instrument obtained from the aerial 

platform in the Gulf of Maine. This study has attained depths of 13 ft, which were 

enhanced up to 20 ft (Polcyn et al., 1970) by an MS instrument sensor in Caesar 

Creek of Florida. Polcyn and Lyzenga (1973) proposed a numerical approach for SDB 

demonstrating the correlation of depths up to 5 metres around Little Bahama Bank 

using Band 4 & 5 (ERTS-1) MSS data acquired in the month of October 1972. On the 

implicit premise that attenuation is persistent across the satellite scene, Paredes & 

Spero (1983) expanded the modified ratio assumption to multiband. A semi-empirical 

solution was created by Stumpf et al. (2003) utilising a reflectance ratio with only 

using two parameters, which may be used for low-albedo topographies. SDB using 

the ratio transform approach has shown to be reliable; it can recover data down to a 

depth of 25 metres, is stable, and gives a normalised RMS error of 30 percent up to 

that depth range. Nevertheless, this method solitary works in translucent, clear water 

with better accuracy. This method had been expanded to take into account how 

turbidity and chlorophyll affect SDB estimates (Caballero, Stumpf, & Meredith, 

2019). 

2.4.2.2 Linear Band SDB 

Warne (1978) demonstrated that Landsat can estimate SDB up to 0-20 metres with a 

precision of 10% by utilising single-band linear method in Australia. Lyzenga (1981), 

assumed that the  optical characteristics were consistent throughout a 
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particular satellite scene, discovered that this approach delivers correct results to a 15-

meter depth m in clear water at North CatCay in the Bahamas. To determine SDB at 

two locations in the Bahamas Islands at depths of 0 10 m, Lyzenga (1985) employed 

a hybrid airborne sensor that combines a LIDAR system with a passive MS. For 

depths of 8 10 m, RMSE was determined to be 0.928 m. Lyzenga persisted in 

working to enhance SDB and put out a multi-band linear approach (Lyzenga et al., 

2006).  

This technique's algorithm corrects deviations in both attenuation as well as 

seabed using a summation of log-transformed reflectance, mainly in the green or blue 

bands. The said model is useful in locations with homogeneous optical characteristics 

of water & uniform bottom reflectance. This technique also accounts for sun glare, 

provides flexibility in operations, improves seabed distinction, and improves 

performance by utilizing two or more than two satellite bands. 

  

2.4.3 Analytical SDB 

The physics of radiative transfer of EMR through a water body is fundamental 

for analytical procedures, which are based primarily on the physical characteristics of 

water elements including absorption, backscattering, and attenuation. Gordon and 

Morel (1983) claim that the analytical tools directly apply the RT theory by 

characterising the absorption as well as backscattering coefficients components of the 

water. Proper input of a collection of atmospheric effect-related parameters is also 

necessary for the implementation of analytical approaches. Even small mistakes in 

atmospheric correction can create considerable retrieval problems since atmospheric 

influences make up 90% of the total signal while water leaving radiance just makes up 

10 percent of the total of it (Caballero et al., 2019).  Another problem of the analytical 

technique is that proper water constituent prediction in coastal vibrant water requires 

the concurrent gathering of field data and data acquisition. Analytical approaches are 

computationally demanding and challenging to carry out since there are no perfect 

atmospheric correction tools that deliver actual water Rrs for shallower or optically 

very complex coastal region waters. 

The major strategies used to resolve the RT problem analytically include 

inverse modelling, forward modelling, LUT based upon the forward as well as inverse 

modelling, or even any such combination of all three (Hodl et al., 2018). Modelling a 
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variety of possible models of Rrs as an interactive function of the water composition, 

bathymetry, & sea bottom reflectance is a method of analysis. By finding the 

simulated Rrs that correspond closely to the observed Rrs in each & every pixel the 

most closely, these models are then inverted to establish the constituents of the water 

as well as bathymetry (Hedley et al., 2009). 

 

2.4.3.1 SDB: Forward/Inversion Modelling 

The analytical method especially Forward modelling  is applied predominantly 

to aid three functions; describe, forecast and/or model the inversion to describe the 

associations among bio-optical or physical parameters and RS parameters, as well as 

derivative variables such as AOPs and IOPs. Actual satellite imagery was used to 

elaborate on some occurrences using model simulations. The possibility of modifying 

the model to more accurately anticipate some occurrences seen in the actual data but 

not explained by it is presented (Verhoef, 1998). However, the forward model must be 

inverted in order to retrieve any constituent parameter. 

Using identified remote sensing data, inversion modelling to RTE is used in 

analytical approaches to estimate the input parameters utilised in the model. However, 

its application is dependent on a variety of known and unknowable characteristics as 

well as the bands that are available in satellite imagery. Furthermore, the inversion of 

the model needs intensive computer work and numerous iterations of the forward 

model to draw conclusions (Verhoef, 1998). The common inversion techniques 

simulate constants and variables related to the modelling of AOP & IOP using 

spectral signatures to model parameters. Iteratively revising the variable factors until 

the disparity between the estimated and real image spectral signatures is just as little 

as feasible. Data recovery through inverse modelling is possible for water 

components, water depth, and seabed sediments. Inversion strategies for collecting 

water components in marine remote sensing have rapidly gained popularity (Hedley et 

al., 2009). Various inversion approaches, including linear & nonlinear inversion 

techniques, log-linear inversion technique, adaptive inversion, log-ratio inversion, and 

so forth have been employed in the SDB research. 

 

 2.4.3.2 SDB: using Look-Up Table 

The LUT concept describes an extensive database of known component 

concentrations that comprises spectral signatures, IOPs, radiance leaving the water, 
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water depth, and sea-bottom properties. Choosing the best match across all of the 

criteria means assessing the spectral signatures of satellite images in addition to the 

LUT database (Dekker et al., 2011). An analytical approach in Mobley's (1994) to 

RTE generated the initial LUT system, named "Hydrolight," via the Forward 

Modelling  of satellite images Rrs (Mobley et al., 2005). LUT by spectral matching 

(Mobley et al. 2005) 

identification of bathymetry, benthic substrate, and IOP (Dekker et al. 2011). Another 

technique ALUT was recognized by researcher Hedley et al., (2009) based on LUT 

which showed SDB successfully derived for the depth up to 30 m significantly. 

In turbid, muddy & shallow coastal waters of Singapore for depths of 4 m, 

Bramante, Raju, and Sin (2013) used MS data from Worldview-2 to compare 

traditional SDB and LUT approaches. Despite having a meticulousness of 0.64 m, 

LUT was constrained by a limited training dataset that had not accurately reflected the 

variation of the water column as well as benthic characteristics. However, the 

outcome of the derivation is dependent on the accuracy of the database of LUT, 

including whether it consists of IOP & AOP, the nature of benthic substrate & their 

spectral signature, along with water depth as in the region of the satellite imagery. 

LUT is widely used for SDB prediction as well as water component identification. 

According to Maritorena et al., (1994), suggested that validating the underlying 

approximations and quantifying their influence is necessary for the safer application 

of LUT algorithms. They also employed a two-step comparison process: first, they 

compared the analytical solution to the exact answer obtained through RT Monte 

Carlo simulations, and then they compared the spectrum reflectance in varying depth 

and bottom type to ground truthing data.  

Despite significant progress has been made in analytical techniques for 

calculating marine IOPs using sensor radiance, these techniques still fall short of 

perfectly resolving to that of the analytical equation. Mouw et al., (2015), draw a 

similar conclusion describing analytical tools as a contentious scientific issue that 

requires ongoing improvement to translate from laboratory-based conclusions to field 

procedures. The said limits and difficulties of analytical tools & techniques were 

resolved by a limited theoretical convention, that served as the foundation for the 

division of analytical methods into SA and QA. 

 



29 
 

2.4.4 Semi-Analytical SDB 
When used prior to 1998, the majority of SDB studies refer to SE techniques as SA 

techniques. The analytical RT formula (Mobley, 1994; Maritorena et al., 1994) was 

modified by Lee et al. (1999), who also developed the SA approach, to an explanation 

for the water-column optical properties, bathymetry, and seabed reflectance. This 

technique was created using spectral matching using the 'Levenberg-Marquardt' 

optimization algorithm based on the way that water absorbs and scatters light. The 

water quality parameters dataset is required to enhance the use of HS data to meet the 

spectral properties in the HS data.  

According to Lee, Carder, and Arnone (2002), their proposed method does not 

require any field data for validation, as well as developed algorithms may be 

employed in a range of settings to predict the outcome more reliably than empirical 

methods (Sathyendranath, 2000). Several types of marine research, especially those 

requiring bathymetry & water-column characteristics, have seen a rise in the 

popularity of the semi-analytic approach. Though the said method was primarily 

established for HS data, it may be effective to analyse the MS dataset (Dekker et al., 

2011). Utilizing HS satellite data, an optimization approach, and bathymetry in 

shallow regions, Lee et al. (1999) established a more accurate derivation.  

A conventional SA method that relies on spectral matching involves three 

steps, as per McKinna et al. (2015): (i) calculated Rrs is analytically interpolated to 

the detected one via forward modelling, (ii) Exponential / power law function is used 

to describe the spectral forms of unknown quantities, and (iii) An inverse approach is 

then used to iteratively alter the spectral IOP's magnitude in the forward model.  

According to Werdell et al. (2018), there are four main categories into which SA-

based techniques can be divided: a) Non-linear Spectral optimization, viz. Levenberg-

Marquardt method (McKinna et al., 2015), b) Spectral-deconvolution, where the 

spectral profile is allotted by step-wise algebra; c) Direct-linear Inversion viz. linear-

matrix inversion, d) Bulk-inversion which regulate IOPs at each individual band 

independently. 
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Figure 2.4: SA-based SDB Techniques 

Lee and Carder (2000) stated that SA could retrieve SDB with an R2 of 0.96, 

but the error grew worse as turbidity increased. Following on the optimization of 

Brando et al. (2009) developed the SAMBUCA approach, which was used to evaluate 

aerial HS images from the CASI 2 satellites at Moreton Bay, Australia, at depths 

ranging up to 10 m. The data shows optically deep water provided less output than 

shallow clear water. Dekker et al. (2011) equated five SA, including BRUCE, HOPE, 

CRISTAL, ALLUT, & SAMBUCA by use of CASI-2 at the Lee-Stocking Island, of 

Bahamas at depths ranging up to 13 m. Regardless of the fact that almost all 

techniques predict SDB & benthic substrate classes, the RMS error for the BRUCE 

approach was the lowest. Liew, Chang, and Kwoh (2012) studied the accuracy and 

limits of WorldView-2 imagery in Singapore Strait to recover SDB in turbid muddy 

coastal water employing SA. Although the study discovered that the Red & Yellow 

bands proved beneficial for shallow water SDB, the maximum depth of SDB had only 

been around 2.4 m. Notwithstanding, the many SDB researches stated above, SA 

algorithms have the ability to yield depths of up to 15-20 m. Few studies expanded on 

SDB retrieval even when there was no field data. This advantage can help to ensure 

data creation at any location and over a long time. 

 

2.4.5 SDB: Quasi Analytical 

Lee, Carder, and Arnone (2002) proposed a multi-band QA technique to find total 

backscattering & absorption coefficients using associations between Rrs & IOPs of 

water-column by adapting RT theory & equation. Since the QA technique has 

analytical nature, it may be used for both data from MS & HS satellite sensors. The 
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research also advocated for the adoption of retrieval approaches for quality control 

that are as accurate as optimization and as quick to calculate as empirical procedures. 

In the QA equation, bb calculated according to the RT equation (Gordon 

and Morel, 1983) using Rrs with a reference wavelength of 555 nm. QA techniques 

have been used (Zhou, 2011) employing HS data of EO-1 satellite to predict 

bathymetry and sub-bottom benthic features by means of MS satellite data (Huang et 

al., 2017; Eugenio et al., 2015); comparison among few SA methods in SDB 

derivation (McKinna et al., 2015); and to prove SDB without any ground-truth 

bathymetry (Chen et al., 2019). 

 

2.5 Summary  

SDB has gained a lot of scientific community acclaim for its synoptic coverage and 

ability to gather data from inaccessible places. Although active sensors are utilised to 

predict SDB, passive sensors are the most common. We have primarily considered 

passive sensors in this study. For the past 50 years, optical SDB has been compared 

both within and between approaches. The comparison, however, was constrained by 

characteristics or inconsistent environmental factors that were peculiar to the site. 

Comparative analysis was hampered by the research area's varied depths, different 

sensor resolutions, and the dynamics of coastal IOPs, to name a few. We also 

highlighted the areas in the SDB domain where there are difficulties and evident 

knowledge gaps that need to be filled in. With the fluctuating distribution of 

influencing variables for creating operational products for coastal areas, the current 

boom in estimating SDB research is particularly concentrating on shallow region 

water depth derivation, which presents various complications. 

Based on an examination of the literature in the field, a matrix of SDB 

technique selection is provided. Future researchers may find this matrix useful in 

deciding how to proceed with SDB research based on the needs of the study region. 

For experts in the field, a ready reckoner of required satellite imagery, ground-truth 

bathymetry, methods, and SDB algorithms as per the required accuracy level.  
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Table 2.2: SDB selection matrix  

 

 

The present research on SDB is concentrated on how well it can provide 

operational goods, with the goal of using it in channels, ports, harbours, etc. in real-

time. Some space satellite interventions are presently discussing the contemporary 

limitations of best-suited equipment and sensors for the precise collection of data in 

shallow coastal region waters. The cloud-based platforms as well as web-based 

solutions are now accessible to get over the restrictions of big-data processing abilities 

with or without downloading or acquiring data and have the advantage of thinking 

outside the boundaries of traditional algorithms while using the hybrid approach. 

Given the dynamic nature and heterogeneity of water column characteristics, several 

constraints such as chlorophyll, turbidity, and other variables a substantial issue that 

has gone unresolved in SDB research for several years. These limitations demand a 

new perspective employing more complex data and models. SDB investigators now 

have a plethora of possibilities to investigate how dynamic components in the water 

column of the sea relate to SDB. 

 

To sum up the literature and arrive at a research statement, it can be inferred 

from the literature that; 



33 
 

i) The application areas of SDB are significantly rather exponentially 

growing. At the micro level, it emphasises the importance of ports, 

harbours, and navigable channels wherein at the macro level projects 

like Seabed 2030 (Collaboration between the Nippon Foundation & 

GEBCO) aim to map the  seabed by the year 2030. The 

commercial use of SDB in navigation, submarine cable laying for 

internet & telephony, marine economic zones and spatial planning, 

military activities, fisheries and aquaculture, commercial exploitation 

of corals & benthic habitats, global climate change, rising sea levels 

and depleting coasts are also demanding revolution in SDB methods. 

ii) SDB have the potential to contribute hugely to the coastal database but 

still a major challenge to SDB methods is dealing with turbidity and 

deriving SDB in Case-II waters of coastal regions.  

iii) The highly turbid nearshore areas are very dynamic in nature with 

regard to the content of sediment and various other water column 

properties. In order to provide a reasonable SDB accuracy, 

conventional SDB algorithms need to be replaced with AI-based 

solutions to include water column properties data in SDB derivation.  

iv) The SDB algorithms with reasonable accuracy need to be validated in 

different geographical areas having to vide differences in optical 

properties of water columns for operational use as a cost-effective 

alternate for hydrographic surveys. 
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CHAPTER 3: METHODOLOGY 

 

This chapter elaborates on the methodology implemented for research in this study. 

The initial section specifies the materials and methods used in the study specifically, 

study sites for exploratory, development of model, and validation stages of research. 

Thereinafter, the satellite data, bathymetric data, & INCOIS-SATCORE data used in 

this study have been discussed. The remote sensing data needs to be pre-processed 

before using for further analysis, the same has been discussed with the flowchart of 

steps followed in pre-processing of data. The further section discusses the research 

methodology and procedures adopted in this research. 

3.1 MATERIALS AND METHODS 

This section describes all the geographical areas/sites of the study selected for 

exploratory and validation of research. The further section describes data used in the 

study viz. hydrographic survey data, satellite data, and INCOIS-SATCORE data. 

Also, pre-processing of data and conversion of data to usable form has been 

described.  

3.1.1 Study Sites  

Exploratory  
Preliminary analysis for assessing the accuracy of the SDB model was undertaken in 

two different study sites. The sites were chosen for their complexity, underwater 

terrain as well as extremely turbid nature as river mouths and also a confluence of 

rivers. 

Vengurla: The study site Vengurla is located at a height of 1.2 meters from Mean Sea 

Level, situated in the Sindhudurg district of Maharashtra, India. The coastline is made 

up of two steep cliffs that surround a beach that is embayed in the middle. A 

Casuarina-type plantation may be found beyond the relieved sand dunes that run 

parallel to the coast. There are mangrove plantations on both sides of the Karli River's 

creeks. There are semi-diurnal tides that range in height from 1.3 to 2.3 meters in this 

location. During the monsoon occurrence of high waves, the Vengurla shoreline is 

severely subject to seasonal erosion. A group of two big hillocks and almost eighteen 

significant and several smaller rocks make up the archipelago. This location has 

become dangerous for navigation because of the abundance of visible and submerged 
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rocks as well as impediments. Southwest of Vengurla, these rocks are 8.3 km in width 

and 14 km in length. Several kinds of seabirds have their ecological habitation in this 

small region (Mahabal et al., 2007). The location was marked on the nautical map as 

being fouled for anchorage and dangerous for seagoing boats to pass through. The 

fishing activities are carried out by local fishermen in the area, who are highly 

acquainted with navigating hazards, and they are able to traverse their fishing boats 

effectively enough to avoid these submerged rocks (Ashphaq, Srivastava, & Mitra, 

2022). The region has been preferred for investigation because of its complication for 

steering hydrographic surveys, the existence of several underwater structures, and the 

very turbid character of the sea water as a result of the Karli River's outflow carrying 

deluge of sediments. Due to these complications, the location is perfect for evaluating 

SDB in the region. To suit the research region, the ROI was clipped. The study's 

encompassed area is 208.46 square kilometers, which is around Twelve kilometers 

from the shore. 

 

 
Figure 3.1 Study Area Vengurla & Mormugao 

Mormugao: The study site Mormugao, a beautiful natural harbour and one of the 

notorious oldest ports on the Western Coast of India. Today it is one of the major 
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ports of India. This site of study is the confluence of the two big rivers, the Zuari and 

Mandovi Rivers. The research area is extremely north of the port's navigable channel, 

which is not included since dredging is conducted regularly and bathymetry may 

differ greatly from actual in-situ data. The bathymetric data collection using a 

hydrographic survey was carried out using an SBES with a frequency of 210 kHz.  

Total of 1241 depth samples have been used in the investigation, with training and 

testing data in the ratio of fifty percent over a depth range of 22 m for roughly 120 sq. 

km area. Figure 3.1 shows the overall coverage of the study site on the western coast 

of India. 

 

INCOIS-SATCORE DATA Sites 

INCOIS led SATCORE to the creation of novel bio-optical algorithms in Indian 

coastal waters and long-term observations of bio-physio-optical features for validating 

current OCM algorithms. Twelve time-series data stations for sampling transects 

throughout the east and west coasts of India were used by INCOIS to collect data for 

continual bio-optical parameter monitoring. These sites are shown below in Figure 3.2 

and are also listed below; 

o Junagadh Agricultural University (study site Off Okha) 

o NIO, Goa (for site Off Goa), Goa University (study site Off Goa) 

o Mangalore University (study area Off Mangalore) 

o CIFT, Kochi (Off Kochi) 

o Annamalai University (Off Parangipettai) 

o IIT Madras (Off Chennai)  

o Andhra University (Off Visakhapatnam), 

o CSBoB, Andhra University (Off Visakhapatnam),  

o Berhampur University (Off Gopalpur),  

o Jadavpur University (Off Frazergunj),  

o CARI (ICAR) (A & N Islands). 

Among the above study sites, 4 sites were selected for the study Kochi, Okha, 

Chennai, and Gopalpur which were used for model development and testing the 

model. 
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Figure 3.2 INCOIS SATCORE Data Collection Stations 

 

Sites for Model Development 

Kochi The study site Kochi is among the major Indian port and is situated along the 

southwest coast of Kerala state, India. This port has historical significance and is also 

known as the Queen of Arabian Sea . Kochi was selected due to the presence of a 

large influence of freshwater discharge, highly connected backwaters, and the 

occurrences of seasonal mudbanks (Minu, Lotliker, Shaju, & Santhoshkumar, 2014). 

Although the underwater terrain is smooth and depths increase gradually seaward, 

riverine OAS discharges along the coast often produce erroneous water constituents 

estimation from the satellite data (Chakraborty, Gupta, Lotliker, & Tilstone, 2016). 

The INCOIS-SATCORE data samples were collected at discrete stations off Kochi 

coastal waters from 2008 to 2016. However, this study has included data from only 

five days which are proximally near to satellite pass. The figure below shows the 

overview of the study area. 
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Figure 3.3 Study Area Kochi 

Chennai: Chennai Port is India's second-largest cargo port. It is the third oldest port 

out of India's thirteen major ports as well as the biggest in the region of the Bay of 

Bengal. Chennai Port lies along the flat coastal strip recognized as the Coromandel 

Coast on the eastern coast of India.  It slopes quite flatly at the bed. Due to its location 

along the shore and proximity to the thermal equator, the port doesn't experience large 

seasonal temperature variations. Because the tides are semi-diurnal, there are 2 high 

tides & 2 low tides each day across the port region. The covered area is more than 100 

sq. km. 
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Figure 3.4 Study Area Chennai 

Okha:  OKHA is a medium port located opposite Bet Dwarka Island and on the 

approach to the boarding point for the ferry to Bet Dwarka at Okha Jetty. Okha is a 

busy and historically significant port in Gujarat that is ideally positioned. The covered 

area is having about 1030 sq. km coverage. 
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Figure 3.5 Study Area Okha 

Gopalpur: Gopalpur port is the deep-sea port on the Bay of Bengal located in 

Gopalpur, Ganjam District, Odisha, India. The natural port harbor has a depth of 

18.5m. Situated on the eastern coast, it is a natural deep-water port.  Gopalpur is 

spread across on a 4 km stretch of desolate shore without any mangroves or tropical 

vegetation. The covered area is having coverage of about 1379 sq. km. 
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Figure 3.6 Study Area Gopalpur 

 

3.1.2 Data  
Hydrographic Survey Data: The cliffy submerged hills and underwater hazards in 

Vengurla rocks presented a complicated and difficult region for conducting 

hydrographic surveys in order to assure survey boat safety, instrument safety, and 

safety of hull-mounted transponders. Therefore, the site was selected for the 

exploratory part of the study along with another site Mormugao which is a river 

confluence of two major rivers and thus highly turbid in nature. Hydrographic data 

was collected utilizing a bathymetric survey in the region in 2018 using an SBES 

Deso-30 which propagates sound at 210 kHz. In the undersea rocky area, Edgetech, 

4200 FSL, Side Scanner sonar was engaged to locate shoals and impediments for 

side-scanning. According to the order of the survey, the precision of vertical accuracy 

reached is 0.05 percent of maximum depth for depths ranging from 0 to 32m. The 

echo sounder instruments were calibrated using bar-check before and after the survey. 

The 'Differential Global Positioning System' achieves horizontal precision of 95 

percent confidence level, (i.e. 5 m Plus 5 percent of water depth). Although the 
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hydrographic survey included huge depth data, data samples were chosen based on a 

3% error margin as well as a 95% confidence level. The scikit-learn library's train test 

split function was employed to generate a randomized sample dataset.  

For all other sites used for the development and validation of the model 

respective navigational charts were utilized to derive bathymetric data. All the largest 

scale charts updated with the latest hydrographic surveys by National Hydrographic 

Office for the study region were used. Although, bathymetric data was sparse, but was 

large enough for the development of the model. 

Remote Sensing Data: The information on the satellite images is shown in Table 3.1 

follows. The level-1 pre-processed data from the OLI sensor of Landsat-8, sensor MSI 

of Sentinel-2, as well as data of ASTER sensor onboard Terra satellite, images have 

been radiometrically corrected as well as orthorectified was downloaded from the 

USGS Earth Explorer application. All the above three sensor satellite datasets are 

publicly accessible which deliver adequate spatial resolution necessary for SDB 

research. The Landsat-8 instrument has a spatial resolution of 30 meters (15-meter 

Panchromatic) and a re-visit period of 16 days with 185 km swaths. The sentinel-2 is 

gathering data at 10 metre spatial-resolution with a re-visit duration of 05 days and a 

swath of 290 km. The ASTER has a spatial-resolution of 15 meters, and a temporal-

resolution of 16 days, for a swath width of 60 km. Except for ASTER, the satellite 

imagery data was retrieved for the hydrographic survey's proximal date. The table 

below summarises the satellite image utilized in the research. 

Table 3.1: Satellite Data in the Study 

 



43 
 

Most SDB research has employed blue-green bands for research on SDB out of 

several many other spectral bands (Gao, 2009). The present study attempts to validate 

frequently used SDB techniques in the Vengurla Rocks' complicated and turbid water. 

The purpose is to use appropriate methods to get the optical satellite data image to 

correlate to depth points. 

Satellite datasets were selected by their geographical coverage of the research 

region, cloud covering 10 percent below, and with temporal approximation to the in-

situ field investigation.  Satellite images had been processed to a radiometric 

resolution of 12 bits, which provides enough variation in remote sensing reflectance 

to predict SDB. ASTER/Terra imagery has an 8-bit radiometric resolution, which 

provides substantially less fluctuation in a dataset, particularly in the water area. 

ASTER/Tera dataset does not have a blue band, therefore only the green plus red 

bands were used. Because the green band's transect profile has greater fluctuation in 

reflectance than other bands including the red band, only the green band is used for 

the SDB in log-linear transform for ASTER. 

 

INCOIS-SATCORE Data: Indian National Centre for Ocean Information System 

(INCOIS)  project SATellite Coastal and Oceanographic Research (SATCORE) , 

established eight different time-series stations in the Indian coastal water, for 

measurement of the bio-optical and physio-optical, and chemical parameters. All 

stations are geared with sophisticated Instruments like Integrating Sphere, 

Spectrophotometer, Sun-photometer, Weighing Balance, Fluorometer, Automatic 

Weather Station, Aspirator Pump, and Vacuum Filtration Unit, (INCOIS Annual 

Report, 2016). These instruments have collected time-series data for various bio-

optical parameters, a few of which have been studied extensively in marine remote 

sensing studies. The SATCORE data includes Time-series data on TSM, Total 

Chlorophyll, Particle size (micro, nano, and pico), Temperature, Salinity, Alkalinity, 

Dissolved Oxygen, pH, Turbidity, Dissolved Fluorescence, and other chemical 

composition (like Nitrite, Nitrate, Phosphate, Total Phosphorous Silicate, 

Ammonium, etc.). The dataset was provided by the INCOIS-SATCORE project 

coordinator in .xlsx format. The dataset was having information collected from the 
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year 2008 to 2017 the for above stations. The missing data was filtered prior pre-

processing of data. 

 3.1.3 Pre-processing 

Top-of-Atmosphere radiance data is processed to compute the reflectance. The 

metadata file contains the vital parameters for reflectance calculation: i) Earth-Sun 

distance (in astronomical units), ii) at-satellite radiance, iii) mean solar exo-

atmospheric irradiances, iv) sun elevation in degrees, and v) solar zenith angle. To 

obtain underwater reflectance and sub-bottom reflectance in shallow water, water 

column correction is also used in the computation of SDB (Ashphaq, Srivastava, & 

Mitra, 2022). Surface reflectance is converted from scaled TOA reflectance in 

Landsat imagery.  Luca Congedo developed a Semi-Automatic categorization plug-in 

(SCP) for QGIS that has automated techniques for downloading, processing, and 

translating radiance data to surface reflectance data for different satellite images 

(Congedo, 2019). The ASTER imagery has been pre-processed using the QGIS SCP 

plugin. is an RT-based atmospheric 

correction tool that applies a standard NIR-SWIR technique for atmospheric 

correction, (Vanhellemont & Ruddick 2015). This tool is also extended to pre-process 

Sentinel-2 and Landsat-8 data. This technique assumes 0% SWIR reflectance and 

obtains water-leaving Rrs in the visible and NIR bands in coastal waters and inland 

seas (Vanhellemont, 2019).  

ACOLITE performs well in coastal applications developed using Landsat-8 

and Sentinel-2  (Salameh et al., 2019; Caballero & Stumpf, 2020). The DOS 

atmospheric correction has been used as it eliminates the impacts of gas particles in 

the atmosphere and also aerosol to determine BOA values of reflectance using an 

image-based approach. The DOS technique suggests that the black pixel in the image 

has no reflected light because of air dispersion. By taking the values of the dark pixels 

out of each pixel in the band images, the effect of air scattering is lessened. The 

derived surface reflectance images were masked in the land area using QGIS. The 

values for the corresponding depth location from the corresponding pixel of the 

image. The data from all the satellite images were exported to tabular .csv format for 
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further processing in Jupyter Notebook using Python. Figure 3.7 below shows the 

steps involved in data preparation.  

 
Figure 3.7: The Flowchart of pre-processing of data for exploratory study 

 

3.1.4 Performance Evaluation 

By analyzing the SDB and regressing the SDB dataset against the validation dataset, 

the perfection of the derived models was determined. The test bathymetric dataset was 

utilized for validation as well as for deriving statistical parameter values. For each 

technique, i) coefficient of determination, R2 , ii) the Root Mean Square Error, RMSE, 

and iii) Mean Absolute Error, MAE were determined using the approach indicated in 

equations 1 and 2 below.  

 

  

 

..  

Where, Xi is Satellite imagery-derived SDB, and X0 is the average depth of SDBs 

Yi is the depth of in-situ data for validation, and y0 is the average of in-situ depth 

n is total depth of data points 

A regression model's effectiveness can be quantified using R2, by comparing the 

predicted model to a consistent baseline by using data mean and thus, it indicates how 
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much superior the projected model is. R2 values will always have a value less than or 

equal to 1.  

The R² Formula is shown below in Equation 3, 

  

 

3.2 RESEARCH PROCESS 
 

The research being exploratory in nature was undertaken in a phase-wise manner 

consisting was various stages as shown below in Figure 3.8. Each stage was feed-

forward to the next stage and feedback was to address any shortcomings in the 

previous stage. 

 

Figure 3.8: The Flowchart of various stages of the Research Process. 

 

Each stage of research is discussed below with a separate flowchart of its execution. 

Stage one dealing with a comparison between conventional, semi-automatic, and ML 

algorithms was executed  at the Vengurla site only; stage two (Univariate study) & 

stage three (Multivariate study) were focused on evaluating the most appropriate ML 

algorithm for SDB in coastal turbid water (employed at both Vengurla and Mormugao 

site); the stages four & five (employed at site Kochi only) were dealing with assessing 

influence of WQP for increasing accuracy of SDB algorithm as well as assessing the 

Stage-1 Analysis of SDB in 
complex & turbid water at 

Vengurla site

Stage-2 Univariate Analysis 
of SDB using ML approach

at Vengurla & mormugao

Stage-3 Multivariate ML 
approach for SDB 

estimation at Vengurla & 
mormugao

Stage-4 Analysis of OAS on 
SDB at Kochi

Stage-5 Impact of OAS CHl, 
Turbidity, and TSM on SDB 

at Kochi

Stage-6 MRF Model of SDB 
at four (Kochi, Chennai, 
Okha & Gopalpur) sites
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impact of OAS with the help of INCOIS-SATCORE data. Wherein, stage six was to 

develop and validate the SDB model executed on all four study sites. 

 

3.2.1 SDB Algorithms in Turbid Coastal Water 

In this step, fully accessible free satellite data from the OLI instrument of satellite 

Landsat-8, the MSI onboard twin satellites Sentinel-2 (A and B), 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard satellite 

Terra were analyzed to extract bathymetry in the navigably extremely compound and 

very muddy water of the Vengurla.  The goal of the study was to assess the most 

effective method and dataset for deriving SDB in the area. A few regularly deployed 

SDB techniques were used for SDB derivation in order to achieve the goal of the 

study.  SDB algorithms applied include Stumpf et al., (2003) developed Log-Ratio 

Algorithm; Lyzenga et al., (2006) Log-Linear Model;  The relative bathymetry model 

utilizing the Log Ratio Algorithm is part of the SPEAR software suite, which is part 

of Envi 5.3. Additionally, ML methods SVR, LR, and RF Regression have been 

assessed to produce SDB. The results of processing as per depicted flowchart in 

Figure 3.9 is shown in section 4.1 of Chapter 4.  

 

 

The ML syntax used in Python language codes implemented in Jupyter Notebook for 

LR, RF, and SVR is attached for further reference.   

Figure 3.9 Flowchart of exploratory study to compare SDB 
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Refer Syntax-1 from Appendix-III :- Linear ML syntax 

Refer Syntax-2 from Appendix-III :- RF ML syntax 

Refer Syntax-3 from Appendix-III :- SVR ML syntax 

 

3.2.2 Univariate ML Algorithms for SDB  
Based on the inputs of the above step where ML proves superiority over conventional 

algorithms, this phase evaluates the effectiveness of a few uni-variate linear, non-

linear, and robust ML regression methods in SDB estimation utilizing better 

resolution in-situ water depth data from two sites with complicated effluents and the 

spectral bands of SENTINEL-2A, ASTER, and LANDSAT-8. According to the SDB 

literature, where the majority of the study to date has shown the practicality of 0.5-0.6 

m different wavelengths for SDB extraction in aquatic environments, the uni-variate 

method has been used (Stumpf et al., 2003). In addition to evaluating the empirical 

connection between Rrs and the appropriate satellite bands, examined depth-

dependent Rrs of spectral bands. The linear ML, three different robust ML linear 

regressions, and a non-linear GPR ML algorithm were utilized for the relative 

analysis of SDB since both research sites are extremely unequal and complicated. The 

result of processing as depicted in the flowchart in Figure 3.10 has been shown in 

section 4.2 of Chapter 4.  

 
Figure 3.10: The Flowchart of Univariate SDB ML algorithms 

 
The ML syntax used in Python language codes implemented in Jupyter Notebook for 

the following algorithms is attached for further reference.   
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Refer Syntax-4, Appendix-III :- Robust-regression Theil Sen regression 

Refer Syntax-5, Appendix-III :- Robust-regression -Huber regression 

Refer Syntax-6, Appendix-III :- Robust-regression -Random Sample Consensus 

Refer to Syntax-7 from Appendix-III:- Compare Robust Regression Algorithms 

 

3.2.3 Multivariate ML Algorithms for SDB. 
In the previous stage, it was found that univariate Non-linear ML algorithms perform 

better than linear and robust-linear algorithms. Multispectral equipment mounted on 

aircraft driven with 18-channels in the spectral bandwidth 

bands in the visible EMR spectrum (Polcyn & Rollin, 1969). Since then, various 

researchers have discovered that the bandwidth for shallow 

water observation, the red region in the 

blue region (Ashphaq, Srivastava, & Mitra, 2021). However, bands 

which have lower light scattering than other bands are useful in SDB estimation. The 

notion of optically uniform conditions in a single satellite scene allows the utilization 

of all spectral bands in the study. Several studies have used multiple bands to build 

empirical relationships (Moeinkhah, Shakiba, & Azarakhsh, 2019; Salameh et al., 

2019). Multivariate Regression is a supervised ML approach that analyses several 

data variables. One outcome variable and several independent variables make up a 

multivariate regression, which is a generalization of multiple regression. It makes an 

effort to anticipate the outcome utilizing the input of different independent factors. 

Causal relationships between input Remote sensing reflectance and output bathymetry 

are automatically learned by the ML algorithms.  

In this step, we employed multivariate ML regression techniques to assess the 

efficacy of SDB techniques. Because the research sites are so complicated and 

unequal, non-linear, linear, and decision tree regression are utilized to compare SDB 

results. The aim of this study is to validate ML regression algorithms for the 

pragmatic derivation of SDB and to examine the best-suited technique for predicting 

SDB for multivariate dependent variables. This stage examines the performance of 

multivariate ML regression techniques MLR, GPR, MARS, DTR, DTR-K, and RF at 

two different sites, using high resolution ground-truth bathymetric data, spectral bands 

from LANDSAT-8, SENTINEL-2, and ASTER. 
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After pre-processing satellite imagery with the DOS method to remove the 

influence of the atmosphere, and changing from radiance to surface reflectance, the 

dataset has been converted into a tabular format for further analysis using the SNAP 

desktop tool. The ML algorithm processing was performed in Jupyter Notebook to 

determine the best suitable technique for SDB derivation. This was followed by 

performance evaluation, error analysis, and creating of a final SDB map from the best 

result achieved in the study. Figure 3.11 below depicts the flowchart for the applied 

methodology and the result of the same has been discussed in section 4.3 of Chapter 

4.  

 

 
Figure 3.11: Flowchart of the Multivariate SDB ML algorithms 

 

The various machine learning packages available in Anaconda Navigator's Jupyter 

Notebook-Python (using scikit learn libraries) are used to implement the ML in this 

study. ML regression approaches are highly influenced by the sample distribution 

used in training and testing.  

The effectiveness of the ML is significantly impacted by the sample 

distribution. This is especially important at difficult research locations (like Vengurla 

Rocks), where bathymetry is scattered extremely unevenly geographically and the 

accuracy of the prediction depends heavily on the spread of the training dataset. To 

create a more reliable SDB model, the predicted accuracy in such a complicated 



51 
 

region also needs a high number of sample sizes. All datasets were randomly divided 

by using the scikit learn library into 50 percent for model training and 50 percent for 

model validation to verify the effectiveness of the ML algorithms.  Table 3.2 below 

shows the algorithms utilized for SDB are given; 

Table 3.2: Multivariate ML Algorithms 

 

The ML syntax used in Python language codes implemented in Jupyter Notebook for 

the following algorithms is attached for further reference.   

Refer Syntax-8 from Appendix-III :- Multivariate RF 
 

Refer Syntax-9 from Appendix-III :- Multivariate MARS 
 

Refer Syntax-10 from Appendix-III :- Multivariate MLR 
 

Refer Syntax-11 from Appendix-III :- Multivariate GPR 
 

Refer to Syntax-12 from Appendix-III:- Decision tree regression using k-fold 
cross- 

Validation 
 

Refer to Syntax-13 from Appendix-III:- Multivariate Decision Tree for 
Multioutput Regression 

 

3.2.4 Optically Active Substance & Bathymetry 

Based on their contributions to Rrs, the water constituents have been divided into 

OAS (such as chlorophyll-a (unit-mg/L), TSM (unit-mg/L), CDOM (unit-mg/L), 

Turbidity (unit-NTU), Secchi Disk Depth (unit-m), Temperature (unit-oC), Total 
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Organic Carbon (unit-mg/L), Sea Surface Salinity (unit-PSU), Electrical Conductivity 

(unit- -active substances (like Dissolved Organic Carbon 

Total Phosphorus, Phosphate, Chemical Oxygen Demand, Biochemical Oxygen 

Demand, Nitrogen, etc.) (Gholizadeh et al., 2016). In accordance with environmental 

conditions and physical restraints, such as depth, beyond which these parameters 

cannot be recovered, OAS enables retrieval of water column data from remote sensing 

utilising the spectral properties of each parameter.  

At this stage, we used longitudinal coastal seawater data, remote sensing 

reflectance data, and bathymetry data to examine the relationship between them. The 

study has been carried out in two phases; i) deals with pre-processing of data, and ii) 

analyzes the relationship between bathymetry with each SATCORE parameter 

distribution in the study site Kochi only. The regression model has been used to 

analyze the causal relationship of dependent variables i.e. 

inde  

The objective of this step was to identify the influence and utility of INCOIS-

SATCORE data in further processing and model development. This involved rigorous 

processing of longitudinal data to infer the result. Being a very lengthy and time-

consuming execution of data processing, the processing of data was limited to only 

site Kochi. The selection of the Kochi site was for the reason of the availability of 

time synchronous INCOIS_SATCORE & Remote Sensing data.  

 

 3.2.4.1: Pre-processing of SATCORE Data 

The INCOIS-SATCORE data was in .csv format collected for 10 discrete geo-

locations points evenly distributed in the study area. The terrain in Kochi is very 

smooth and bathymetry gradually increases seawards. The influx of sediment in the 

channel is mapped by 03 samples at regular intervals (0m, 5m, & 10m) within the 

Kochi channel. The data were converted to raster images by using the Inverse 

Distance Weighted (IDW) tool in QGIS to interpolate. IDW functions are useful to 

map the range of surface variation using a set of point data. A linear weight for a set 

of sample points is determined for calculating the raster cell values as a function of 

the distance between the input points and the output cell such that the more the 

distance, the less is influence on the output value (Morales, Stuart, Platt, & 
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Sathyendranath, 2011)

to extract the reflectance values and OAS for the corresponding depth location from 

the corresponding pixel of the image. The data from all the satellite images were 

exported to tabular .csv format for further processing. Figure 3.12 below shows the 

steps involved in data preparation. 

  

Figure 3.12: The Flowchart of Pre-processing with INCOIS-SATCORE data 

3.2.4.2 Bathymetry-SATCORE Data Analysis 

In the previous stage, the data has been converted into a tabular .csv format for further 

analysis using the SNAP desktop tool as an output of pre-processed data. In this stage, 

the statistical parameters were analyzed creating a descriptive statistical summary of 

data. The SATCORE data was collected in different units, therefore data were 

standardized to a scale of 0-1. The correlation matrix for each dataset was created to 

check the relationship among variables in each event. Each of the SATCORE 

parameters and each spectral band of satellite data was regressed against bathymetry 

to assess the bathymetry-dependant spatial variability and distribution of OAS as well 

as spectral bandwidth data using IBM SPSS Statistical software.   

The multiple regression analysis with all the parameters was carried out for 

each event of SATCORE and all the important sub-set parameters contributing to the 

increasing SDB accuracy were identified using Minitab 18 software Regression > 

Best Subsets function. The R2 (higher the value, the better the model and is always 

between 0-100%), Standard Error (standard deviation measured in response variable 

units, if S is lower indicating the better the model), Mallows' Cp criterion were used 

to analyze a different set of multi-variate regression model. An indicator called 

Mallows' Cp indicates the comparison of the accuracy and bias of the complete model 
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to models that include only some of the predictions, thus helping reduce the number 

of predictors of the model. Figure 3.13 below shows the flowchart of the methodology 

of this second stage. The result of the processing as per the flowchart below has been 

presented in section 4.4. of Chapter 4. 

 

 

Figure 3.13: Flowchart of the SATCORE data analysis. 

 

3.2.5 Influence of Chlorophyll, TSM, & Turbidity on SDB  

The result of the previous stage shows that Bathymetry is only influenced by the spatial 

distribution of Total Suspended Material (TSM), Chlorophyll (Chl), and Turbidity in coastal 

water. Therefore, the goal of this stage was to improve the accuracy of SDB by understanding 

the spatial distribution of Total Suspended Material (TSM), Chlorophyll (Chl), and Turbidity 

in coastal water. A preliminary investigation using the numerical analysis between Landsat-7 

& 8 spectral bands, OAS parameters, and bathymetry was carried out in this stage. SDB has 

been derived using three ML; Linear, RF, and SV Regression. Resulting SDB residuals have 

been analyzed in relation to Chlorophyll, Turbidity, and TSM in coastal seawater. The study 

found that most of the erroneous SDB residuals and extreme values were distributed in high 

or medium-concentrated OAS regions. The result of the study may further enhance SDB 

estimation accuracy by considering the influence of the above three OAS in coastal waters. 
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Table 3.3: SATCORE & Satellite Data  

 

 

3.2.5.1 Cross Validation  

This stage deals with the estimation of SDB from satellite data using Landsat-7 & 8 

spectral bands. The bathymetric data were also transformed to a raster of 30-m spatial 

resolution to match Landsat data using the IDW interpolation method. Three different 

machine learning algorithms were applied for SDB estimation; LR, RF Regression, 

and SV Regression using QGIS ENMAP-Box plugin (EnMAP-Box, 2019). EnMAP-

Box is a QGIS plugin providing a graphical user interface-based visualization and 

processing framework for vector and raster data. This processing framework has 

commonly used classification and regression algorithms in remote sensing and 

photogrammetry. Each algorithm was developed for an individual dataset of a 

particular scene, and then it was cross-validated to both scenes to estimate SDB and 

thus create a matrix of the result. Finally, SDB residuals were analyzed for spatial 

variability and distribution of OAS by converting Chl, TSM, and Turbidity into 

categorical variables. The detailed procedures adopted for Stage II are elaborated 

below in Figure 3.14. 
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Figure 3.14: Flowchart for SDB error analysis  

 

3.2.5.2 Validation of Satellite-Derived Chl, TSM, and Turbidity 

The study aims for SDB analysis in highly turbid areas, as the higher level of 

sediments causes stronger backscattering. The time gap between satellite pass and 

SATCORE data acquisition was a major constraint to overcome in this study. To 

overcome this, retrieval of these parameters (Chl, TSM, and Turbidity) from satellite 

data using different regional and global algorithms and validating them against 

SATCORE data was a feasible solution. To achieve this aim the literature on retrieval 

of TSM, Chl, and Turbidity was examined. Saberioona et al., (2020) developed and 

tested more than ten algorithms for Chl and TSM prediction using Sentinel-2A 

satellite imagery in various water reservoirs of the Czech Republic, Central Europe 

and achieved an accuracy of predictive accuracy for both Chl (R2 -0.85) and TSM (R2 

0.80).  Wang et al., (2017) developed and tested a few algorithms for TSM and Chl 

on-field hyperspectral data collected in irrigation ponds with significant accuracy. 

Wang et al., (2017) used Landsat data for modelling the TSM concentration of highly 

turbid estuaries along with coastal China and tested more than 13 TSM algorithms 

from previous studies. Avinash et al., (2012) used IRS(P4) Ocean Colour Monitor  

(OCM) dataset to develop a regional algorithm for TSM in coastal Karnataka with 

reasonable accuracy.  Dogliotti et al., (2015) provided a single algorithm to predict 

turbidity in all coastal regions using a semi-

Molkov et al., (2019) developed more than ten regional 

Models for estimating Chlorophyll-a as well as TSM Concentrations using Sentinel-2 

satellite data in the Gorky Reservoir.  
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The tested algorithms include more than 30 different algorithms; for Chl 

(Saberioon, Brom, & Soucek, 2020; Wang et al., 2017); TSM & Turbidity by Wang et 

al., (2017) who tabulated and tested more than 20 algorithms, TSM & Chl (Avinash et 

al., 2012; Molkov et al., 2019) and Turbidity (Dogliotti et al., 2015; Nechad, Ruddick, 

& Park, 2010). However, the final algorithms after validation with temporally 

proximal SATCORE data were as follows; 

 (Molkov et al., 2019) 

 

 (Molkov et al., 2019) 

 

 (Nechad et al., 2009)  

 

 
For analysis, both OAS and SDB residuals into categorical variables. The 

standardized OAS were segregated into three categorical variables; Low (0.33), 

Medium (0.67 - 0.34), and High (0.67-1). The SDB residuals were classified into two 

categorical variables 1- SDB residuals within the RMSE limit of ± 2.5 m and 2-SDB 

residuals that are above or below the RMSE of ± 2.5 m. Thereinafter, SDB residuals 

were analyzed for spatial variability and distribution of OAS.  

The result of the entire processing of this step has been discussed in section 

4.5 of Chapter 4. 

 

 

3.2.6 Merged Random Forest (MRF) Model of SDB 

Different SDB models for enhanced SDB estimates have been described in earlier 

Chapters. Amongst them, the RF SDB algorithm has demonstrated greater accuracy in 

SDB determination.  Further assessment of the RF algorithm in SDB estimation in 

different scenes is required to show the robustness of the model for practical use. The 
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strength of the RF algorithm for suitability in SDB derivation is further elaborated 

below. 

Strong modelling methods like RF outperform other methods like single 

decision trees in aspects of persistence. To reduce overfitting as well as lessen bias-

related errors, they combine multiple decision trees, producing insightful results. 

(Sagawa, et al., 2019). Numerous decision trees are developed utilizing randomly 

chosen samples in RF, which is a transformation on single Classification Trees. Due 

to the fact that RF techniques are an extended version of bootstrap aggregation 

'bagging' DT, they are also known as ensembles of DT algorithms. The full set of data 

is used to produce each random subset, and each one has the same number of data 

points. The used data is added back to the entire dataset so that it can be used in 

additional trees. Every data point has to have an equal chance of being chosen with 

each successive random subset when using the "bagging" method that RF uses to 

select random subsets. In bagging, each tree grows on its own, and training samples 

are created from the original data using bootstrap sampling. The average of the model 

generated by each individual tree serves as the final estimation. 

RF's greatest strength lies in the fact that it provides one of the most precise 

ML algorithms currently in use, able to handle a substantial number of predictors 

while also maintaining accurateness in the existence of a significant chunk of missing 

value.  

In this step following execution was processed; 

i) In this stage of research, we have derived all three OAS as per 

algorithms mentioned in the previous section and the same was cross-

validated for each event of SATCORE data collection date for each of 

the four study sites.  

ii) The result of previous stages of research has indicated that most of the 

erroneous SDB residuals and extreme values were distributed in high 

or medium-concentrated OAS regions. Therefore, three OAS Chl, 

TSM, and Turbidity were included in further data processing to 

enhance SDB estimation accuracy by considering the effect of the 

above three OAS in coastal waters.  
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iii) The SDB derivation has been carried out using raster as well as vector 

data points. Two different software packages were used for the 

purpose. The Open Source EnMAP-Box plugin in QGIS for raster data 

and Jupyter Notebook-based Python IDL was used for .csv data. 

iv) The purpose of this phase is to create a much more robust prediction 

model to put the SDB into practice. Thereafter RF algorithm was 

utilized for SDB derivation in each site for each date of the SATCORE 

event.  

v) Thereinafter merging of the algorithms for each date was executed to 

create a single algorithm for each site (such as; there were five RF 

algorithm .pkl files for Kochi, which were merged to create a single 

.pkl file). Also, merging the datasets of each date of each site to derive 

the MERGED RF algorithm was executed simultaneously.   

vi) All single .pkl files for each site (merged for different dates), were now 

merged into a single .pkl file (final MRF model). The ML syntax for 

the same is attached for reference.  

 

Refer Syntax-14:- Syntax for merging of RF .pkl files 

 
3.2.6.1 Merged RF Model 

The steps of development of the MRF model are shown in the figure below. The case 

studies for each site Kochi, Okha, Chennai, and Gopalpur as per the sequence of steps 

mentioned i) - vi) above were executed. The resultant algorithm files .pkl was derived 

by two different methodologies; 1) by merging all .pkl files for each date and each site 

developing a final single .pkl file and 2) by merging all the dataset and developing a 

final .pkl file. The first approach has resulted repeatedly in erroneous programming 

and therefore the second approach was accepted for the final model. 
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Figure 3.15 Flowchart of MRF 

 

3.2.6.2 Methodology to Develop Merged RF Model 

Summing up all the stages of exploratory research for the development of the MRF 

model, the steps of development of the MRF model from scratch are as follows: 

1. The Landsat dataset is available for almost five decades, and searching the 

satellite images that perfectly match Zero-tide is very rare. The bathymetric 

data used in the study was already reduced to chart datum / Lowest 

Astronomical Tide. Therefore, the effect of tides on satellite imagery was 

neglected. The availability of INCOIS SATCORE data for validation of 

OAS used in the study paves the way for searching required satellite 

imagery temporally proximal to it. Accordingly, Landsat satellite data 

(Landsat-5-8) was downloaded from USGS earth explorer with the filter of 

date and less than 10 percent cloud coverage. The imagery with glint was 

avoided for further processing. 

2. The next step in the process of developing the RF Algorithm was the 

delineation of the water region using the NIR band of satellite data. 

Although, pragmatically delineating water regions without a ground truth/ 

GPS coastline delineation may be erroneous and may produce severe errors 

Repeated stage 6 i.e. RF Regression for 4 sites, 
Kochi, Okha, Chennai, Gopalpur  

Merged .pkl files of  algorithms to create 
merged RF algorithm 

Merged dataset of 4 sites to create single RF 
Regression .pkl file 

Final Merged RF Model 

Validation of MRF model in 4 sites 
Accuracy 70-80 % without any field/ground 

truth data

Erroneous Programming 

1. Different libraries for raster (ENMAP 
Box Hubflow.core) 

2.  .csv data Jupyter Notebook SKLearn 
libraries 

Stage 6: Merged RF (MRF Model); Developed 

using data of 4 sites  
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in intertidal areas. However, the NIR band provides a synoptical overview 

of the coastline when a very long coastline is under consideration for study.  

3. The pre-processing has been carried out as discussed in the previous three 

chapters using the ACOLITE open-source module. The flowchart shown in 

the previous chapter shows the pre-processing stages.  

4. Theoretical background of different ML algorithms is already been 

discussed and the previous chapters have shown RF algorithms have the 

best accuracy in estimation with very reasonable processing time. The 

various algorithm to derive OAS has already been discussed and the final 

three algorithms viz. for Chlorophyll- Molkov et al., 2019; for TSM- 

Molkov et al., 2019; and for Turbidity-Nechad et al., 2009 has been used 

by derived OAS from the same satellite imagery. The validation of OAS 

was carried out with available INCOIS SATCORE data. 

5. The OAS, Satellite bands in the visual spectrum i.e., B2, B3, and B4 were 

used in further processing to develop the algorithm. The processing was 

carried out separately for raster data in the EnMAP-Box plugin of QGIS 

and using Jupyter Notebook python IDL for .csv data. The resultant RF 

algorithm was saved as a .pkl file and then the merging of the algorithm 

was carried out using Python script.  

6. Besides, all raster dataset in step 5 above was also extracted in .csv format 

for creating an algorithm based on a merged dataset of 5 test sites.  

7. Thus, a new generic MRF algorithm included three additional parameters 

viz. Chl, TSM, & Turbidity derived from the same satellite imagery used 

for SDB derivation was proposed. 

8. The proposed algorithm was tested and validated in different geographic 

regions of India for a depth range of up to 90 meters and an area of 

coverage of more than 1000 sq km. 
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CHAPTER 4  RESULTS  

 

This Chapter summarises the results of research as elaborated in the methodology 

section of the previous chapter. All six stages of research and procedures to implement 

the same have been discussed in the previous chapter. The results achieved at each stage 

have been shown separately in each section below. The first section shows the results 

of various SDB algorithms and transformations processed in the exploratory stage in 

both tabular and graphical formats. Section two discusses the results achieved in 

univariate ML analysis. In Section 3 of this chapter, multivariate ML and its results 

have been discussed. The further section elaborates on the results of the OAS analysis 

and its distribution in the areas of interest in the study area. Finally, the development, 

testing, and validation of MRF have been shown. 

 

4.1 SDB ALGORITHMS & TRANSFORMATION 

The most cited SDB tools in the literature on the subject include Stumpf et al.'s (2003) 

log-ratio algorithm and Lyzenga et al.'s (2006) log-linear model. The relative 

bathymetry model, which is based on utilising the Log Ratio algorithm, is part of the 

SPEAR software suite in Envi 5.3. Additionally, the ML methods SVR, LR, and RF 

Regression have been assessed to produce SDB. The result of each step of processing 

is discussed below. 

4.1.1 Log Ratio Transformation:  

The Raster Calculator feature in QGIS is used to perform the Log-ratio transform on a 

raster dataset of satellite imagery and bathymetry. The table below shows the few band 

groupings that have been tested and are listed. The correlation coefficients of 

bathymetry to the product derived from the log-Ratio transform are shown below in 

Table 4.1. In comparison to other band groupings, the ratio transforms of the Blue and 

Green bands in the Sentinel-2 as well as Landsat-8 imagery have proven a closer 

relationship to the bathymetry of the area. For the purpose of deriving the coefficients, 

the better resultant transforms from each of three satellite data sets (B/G for Landsat-8 

and Sentinel-2; R/G for the ASTER dataset) and in-situ water depth were regressed. 
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SDB was calculated using the empirical parameters that were obtained. The testing set 

has been used to validate the SDB that was derived. The three performance indicators 

R2, RMSE, and MAE are shown in Table 4.1 below, showing very poor performance 

of log-ratio transforms with very high RMSE (more than 5m) values for a depth range 

of 0 30 m. 

Table 4.1:  Bathymetry-Log Ratio Transform correlation 

 

 
Figure 4.1: Depth vs SDB: Log-Ratio transformation 

Figure 4.1 depicts the scatterplot of in-situ Bathymetry versus SDB derived from the 

log-Ratio transform for all three datasets at the Vengurla site. Except for the ASTER 

dataset, the distribution of the other two datasets shows very poor performance of SDB 

derivation due to huge outliers. 

 

4.1.2 Log Linear Transform:  

 

single-variable log-linear transform. Then every band's resulting transform was 

correlated with the satellite dataset, and the results are displayed below in Table 4.2. To 

determine SDB, bathymetry has been regressed against the transform with the closest 

correlation. The R2, MAE, and RMSE obtained as a consequence of validating the SDB 

against the test set of data are included in the table below. 
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Table 4.2: Bathymetry vs Log Linear transform 

 

The correlation coefficients of bathymetry to the product derived from the Log-Linear 

transform are shown above in Table 4.2. In comparison to other bands, the Blue band 

for Landsat-8 and Sentinel-2 and the red band of ASTER have proven to have a closer 

relationship to the bathymetry of the area. The three performance indicators R2, RMSE, 

and MAE are shown in the table above for a Log-Linear transform with three bands of 

Landsat-8 and Sentinel-2 and two bands of ASTER, showing poor performance of log-

linear transforms with RMSE below 5m for a depth range of 0 30 m. However, the 

performance is slightly better in comparison to the log-ratio transform. The Landsat-8 

dataset has provided an R2 of 0.69 and an RMSE of 4.2, proving the utility of the log-

linear transform in such turbid waters. 

4.1.3 Semi Automated methods:  

The Relative Water Depth (RWD) tool is available in the ENVI 5.3 Package and is used 

to create the semi-automated SDB output. The in-situ bathymetry has been examined 

to correspond with the Ratio method B/G. Because the blue band, which is necessary 

for such processing by the ML algorithm, is absent, ASTER imagery hasn't been 

analysed in this tool. The findings are displayed in Figure 4.2 by a graph showing the 

association between the predicted SDB and validation data. The calculated SDB was 

verified against ground data. The result from the execution of the algorithm through 

this semi-automated tool shows that an almost similar result has been achieved for the 

dataset. 

 
Figure 4.2: Depths vs SDB (ENVI 5.3) 
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4.1.4 Machine Learning:  

Huge training database sets are necessary for applying ML algorithms to function 

efficiently. Bathymetry and relevant data from across all three satellites have been 

divided equally among the train & test datasets for this multi-variate ML in a ratio of 

50% each. Scikitlearn libraries in Jupiter Notebook (python) were used to extract the 

empirical parameters. Python libraries used for processing include; i) sklearn.svm SVR 

for SV Regression, ii) for RF Regression sklearn.ensemble Random Forest Regressor, 

and iii) sklearn linear model for  multiple regression. The table below displays the 

results of the algorithms that were used along with the results achieved. The result of 

processing shows that ML algorithms on all three datasets have provided better results 

than conventional and semi-automated tools. The Landsat-8 dataset applied with the 

RF algorithm has resulted in an R2 of 0.88, RMSE of less than 2.8, and MAE of less 

than 1.9. This result is well within the acceptable limit of a 10% error margin for a 

recursive hydrographic survey. 

Table 4.3: SDB by ML Algorithm 

 

 

The plugin "matplotlib.pyplot" has been used to plot the comparison of the y test and y 

predict data. The density distribution  plot of "Actual verses SDB" was also shown 

using the "sns.distplot" library, as seen in Figures 4.3(a) ASTER, 4.3(b) Landsat-8, and 

4.3(c) Sentinel-2. 

 The scatterplot and density distribution plot as shown in figure 4.3(a) for the 

ASTER dataset (between y-test and y-predict) show that the MLR algorithm has 

produced huge outliers representing bathymetry up to -90 m, i.e., elevation above 

ground. Wherein, for the SVR algorithm, although there are no such outliers derived, 

the standard deviation from the best-fit line is enormous. The Density Distribution plot 



66 
 

for the RF algorithm shows both curves are following the trend except for a few spikes 

in the region of 10 15 m. 

 

  
Figure 4.3 (a): y_test and y_predict (Satellite data ASTER) 

 

The scatterplot and density distribution plot as shown in figure 4.3(b) for the Landsat-

8 dataset (between y-test and y-predict) show that the MLR algorithm has produced 

huge outliers representing bathymetry up to -30m. Wherein, for both the SVR and RF 

algorithms, there are no such outliers derived. Although the standard deviation from the 

best-fit line in the SVR scatter plot is smaller and more uniform through all depth ranges 

than that for the RF algorithm. The Density Distribution plot for SVR and RF 

algorithms follows a similar trend except in the depth region of 10-15m, where RF 

shows SDB and Bathymetry curves are following the trend except for a few spikes in 

the region of 15m. 

 
Figure 4.3 (b): y_test and y_predict  (Satellite data LANDSAT-8) 
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A similar result for Sentinel-2 data has been produced, as shown in figure 4.3(c) below. 

Except for the ASTER dataset, there were no outliers in the other two datasets, and the 

density distribution plot for the SVR and RF algorithms follows a similar trend, 

depicting vast errors in the depth region of 10 15 m. 

 

 
Figure 4.3 (c): y_test and y_predict (Satellite data SENTINEL-2) 

 

4.1.5 Comparison of Satellite data and Technique of SDB 

As a whole, the results show that the Landsat-8 imagery, which uses the RF method, 

has the errors minimised to the lowest level and produces the best performance among 

the three-satellite data used. The least RMSE in the depth range of 0 to 32 m was 2.78 

m, and the least MAE was 1.83 m, both of which were significantly less than 10% of 

the maximum depth. The verification with real contour maps is performed using the 

output product, the SDB map, using Landsat-8 and the RF algorithm model to build the 

SDB map. ML regression methods LR, RF, and SVR, as well as Log-ratio and Linear-

Ratio transforms, were executed to create the SDB product. ML utilising Python script 

libraries in the Jupyter Notebooks yielded better results than previous approaches. 

Three index values, MAE, RMSE, and R2, were used to evaluate the precision of 

algorithms. In terms of the overall findings, Landsat-8 offers the best outcome out of 

the three datasets. In addition to showing promising results, the Sentinel-2 dataset also 

has an edge over Landsat-8 data in terms of spatial resolution. In comparison to the 

other two accessible datasets, the ASTER result was the least desirable.  
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4.2 ML - UNIVARIATE  

The causative linkages involving input "Remote sensing reflectance" and output 

"bathymetry" may be autonomously learned by ML algorithms. The several ML 

libraries in Jupyter Notebook based on language Python by Anaconda Navigator are 

used to implement ML methods for this investigation. The "ten-fold cross-validation" 

approach is also used to evaluate the effectiveness of a few chosen ML algorithms. The 

correlation analysis between satellite data and bathymetry was executed to assess the 

better suitable bandwidth for applying the SDB algorithm. The chosen band based on 

the higher correlation coefficient for both sites is shown in Table 2. Table 2 below is a 

list of the procedures that were applied to the dataset. The table below is a list of the 

algorithms that were applied to the data. 

Table 4.4: ML Algorithms - Univariate Regression  

 

 

The test and train sample distributions have a big influence on ML regression 

algorithms. Three different combinations of train and test data were utilised to assess 

the effectiveness of the ML algorithms and investigate the effect of the sample 

distribution. The sample is divided into three groups: 1) 50% train-50% test; 2) 70% 

train-30% test; and 3) 80% train-20% test using the sklearn package in Python train test 

split. The objective of using different combinations of test-train data was to assess the 

adequacy of test data in the execution of algorithms. The intent was to verify the 

hypothesis that there are no major changes in the accuracy of the algorithm with a 

change in the test-train ratio and then the maximum depth of samples required for 

processing. 
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4.2.1 Result of Univariate ML  

According to the findings, the volume of training and testing affects how accurate ML 

algorithms are at estimating data. The tables below demonstrate how increasing the 

training size considerably improves the ability of algorithms to estimate the dependent 

variables. With a low RMSE of 1.83 m, this result shows that the SLR approach was 

able to predict efficiency with the ASTER dataset with a R2 0.83. On this site, however, 

the GPR provided a slightly better prediction than the SLR algorithm. When estimating 

MAE from the same data, the Huber Regression performed only barely better than the 

SLR. Sentinel image bands in SLR performed better than those of other linear robust 

algorithms at site B, where R2 0.87 and RMSE was 1.61 m. However, Huber regression 

proved to be superior at predicting the minimum MAE at this location. The GPR 

method generated the highest result with R2 0.91 and the smallest error for this area. At 

site A, TSR had poor prediction accuracy, while RANSAC performed poorly at site B. 

GPR had the greatest accuracy in terms of MAE estimates in each location, trailed by 

HR & SLR. GPR gave one of the most comprehensive solutions, outperforming other 

robust linear algorithms based on the RMSE. ASTER produced the best results at site 

A, whereas Sentinel-2A fared better at site B. Tables below illustrate the efficacy of all 

algorithms used in research areas A and B, correspondingly. Each better-performing 

algorithm is highlighted in bold text. 

Table 4.5: ML Regression results - Site A (Vengurla) 
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Table 4.6: ML Regression results - Site B (Mormugao) 

 

 

4.2.2 Linear Vs Robust-Linear Algorithms 

The graph below shows a visual overview of the algorithm & accuracy achieved using 

the statistical indicator MAE for the three at each site. The scatterplot's x-axis represents 

Rrs, while the y-axis represents derived bathymetry. The scatterplot for the ASTER 

dataset shows a significant difference in the best-fit line for linear and other robust 

linear algorithms. Wherein, for the Landsat-8 and Sentinel-2 datasets, there was no 

significant difference in the best-fit line. 

The boxplot in figure 4.4 below compares the MAE (for a test-train of 50 %) 

from all executed algorithms. The median MAE for both Landsat-8 and Sentinel-2 is 

around 3 m, whereas for the ASTER dataset it is 3.2m. The minimum and maximum 

MAE range between 2.6 and 3.8 m, as there are no extreme values derived by the 

algorithms applied. The range of MAE as depicted by the upper and lower quartiles is 

more or less similar for all datasets except for the RANSAC algorithm applied to the 

ASTER dataset of Mormugao. 
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Figure 4.4: Linear & Robust-Linear Regression - Mormugao 

 

Similarly, for the site of Vengurla, the scatterplot for the ASTER dataset shows a 

significant difference in the best-fit line for linear and other robust linear algorithms. 

Wherein, for the Landsat-8 and Sentinel-2 datasets, there was no significant difference 

in the best-fit line. The boxplot in figure 4.5 below compares the MAE (for a test-train 

of 50%) from all executed algorithms at Vengurla. The median MAE for both ASTER 

and Sentinel-2 is around 3.5 m, whereas the Landsat-8 dataset is 4.3m. The minimum 

and maximum MAE range between 3 and 5.8 m, as well as a few extreme values derived 

by the algorithms applied. The range of MAE as depicted by the upper and lower 

quartiles and median values for all three datasets have shown significant differences. 
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Figure 4.5: Linear vs Robust Linear Regression  Vengurla 

 
4.2.3 Linear Vs Robust-Linear - Accuracy Assessment  

The purpose of the research was to determine how well non-linear, simple, and robust 

regression algorithms performed while estimating SDB in rather complicated 

environments. This has produced some important findings that may be used for SDB 

estimation using ML algorithms. The effectiveness of the models has been significantly 

impacted by the sample distribution. Research's findings support the "Pareto Principle," 

according to which it is preferable to divide training and test samples into an 80:20 

ratio, particularly in study areas that are diverse. This would be especially important in 

complicated research sites like Vengurla, in which the concentration of sounding is very 

dispersed spatially and the outcome prediction heavily depends on the spread of the 

spatial train dataset. In order to create a broad and more reliable SDB model with better 

predicted efficiency in such a complicated region, we also need a large sample size. As 
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per the findings reported by this study, as depicted in Figure 4.6 below, which shows 

the plotting of accuracy assessment for three diverse sample sizes and with four 

employed ML on three distinct datasets at two separate study sites, study findings 

suggest an 80:20 train-test division of the data split. With the use of ASTER and 

Landsat images, the findings indicate a considerable rise in R2 with larger sample sizes; 

however, the Sentinel data shows just a slight increase. With such a variation in sample 

size, a significant variation is shown in the RMSE and MAE measurements. The sample 

size in training has been expanded, and both indications have significantly decreased. 

The size of the sample in the train dataset is extended, and both indications have 

significantly decreased. 

 

 

Figure 4.6: Performance on varying ratio of train and validation   

 

80:20 
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4.2.4 Sensitivity Analysis (Sample Size) 

A sensitivity analysis was carried out to determine the appropriate sample size needed 

to calculate SDB using depth data points regression with the Rrs of the single spectral 

band. The sensitivity study utilises the MAE as a performance indicator. For Mormugao 

and Vengurla, train and test data sizes were employed at a 1:3 ratio, gradually 

increasing for each. The results showed that increasing the representative sample for 

training above 200 depth values had no additional positive effects on the outcome. The 

study reveals that the statistical indices MAE seem sensitive to a good amount of 

sample train data up to a maximum of 200 depth values, and the GPR method works at 

its best in every situation with all satellite data. This suggests that non-linear techniques 

are required for SDB investigations, potentially as a result of the varied topography 

beneath the sea. 

4.2.5 Linear, Robust-Linear and Non-linear ML Algorithms 

SLR exhausted the other trustworthy methods in both research locations according to 

the measured R2 for the used regression techniques. Although the GPR model worked 

well in both research locations, site A's findings using other ASTER data were R2 of 

0.87, RMSE of 1.77 m, and MAE of 1.27 m, and site B's findings using the Sentinel 

data were R2 of 0.91, RMSE of 1.51 m, and MAE of 1.17 m. Several scientists have 

examined the SDB in complex seawater at relatively modest depths of less than 5 m 

using conventional methods (Bramante et al., 2013). Only a small number of previous 

studies have used ML approaches, and SDB has only recently started to use ML. 

Several studies have explored SDB in very complicated and turbid locations, but the 

results of the algorithms used, including RF, NN, and other ML algorithms, were quite 

unsatisfactory even for a lesser depth of 6 meters. Several studies have estimated 

bathymetry in an Indian Context applying the linear model of Lyzenga and the Ratio 

Model of Stumpf for a depth range of 6m (Jawak & Luis, 2015) and a depth range of 

10 m (Pushparaj & Hegde, 2017), where measurement errors were much higher than in 

this work. We may thus suggest the use of ML algorithms over traditional methods 

based on the results of this study. This research, which is possibly the first of its kind, 

examines bathymetric mapping for determining the depth of coastal 'complex and 

turbid' waters. The research demonstrates that ML regression analysis can predict 

depths in even complicated waters with reasonable precision and has the possibility of 
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being employed as an alternative for reconnaissance hydrographic survey in hazardous 

non-navigational seas utilizing optical RS data. Nevertheless, using optical RS data 

necessitates at least a few in-situ depths for verification. As a recent replacement for 

the echo sounder depth required for validation, ATLAS onboard ICESat-2 (space-born 

LIDAR) may meet this requirement globally (Parrish et al., 2019). Considering 

increased data coverage throughout the world, this might be an alternative to field 

hydrographic survey, although application is restricted to clean and translucent water, 

as proven by Thomas et al. (2021), who demonstrated that ICESat-2 proved ineffective 

at identifying seabed in the dredging areas. 

4.2.6 Summary of Univariate SDB Analysis 

The main advantages of the ML algorithms used in this work are: i) a comprehensive 

examination of the impact of sampling size; ii) the existence of outliers and inliers in 

the data; and iii) the effectiveness of ML for SDB prediction in complicated coastal 

underwater terrain with variable water column constituents and submerged topography. 

SDB estimates in muddy, unreachable, and shallower water may be solved by the SDB 

techniques used in an affordable, precise, quick, and adaptable manner. The detailed 

examination of the train data sample size's sensitivity, the appropriateness of satellite 

spectral channels, and the analysis of outliers gave a strong comprehension of the used 

ML algorithms and also the outcomes of their use. 

Since there is no single rapid technique that fits all datasets, it is quite customary 

in most ML research to apply multiple algorithms to obtain the best findings. According 

to the state of the science of SDB to date, no research has previously evaluated the 

application of robust-regression algorithms to evaluate SDB modelling for the 

estimation of SDB in coastal region water. The study described in this section reveals 

that non-linear algorithms, such as GPR, have the potential to identify depths in even 

complicated waters with accuracy and thus may substitute hydrographic surveys for 

such uncharted waters. In order to meet international charting criteria, very accurate 

depth data is needed that satisfies various IHO-CATZOC standards. Therefore, SDB is 

only useful in recursive or validation surveys since nautical charts require a far greater 

degree of accuracy. 
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4.3 MULTIVARIATE ANALYSIS  

The performance assessment is based on estimation parameters shown in table 4.7 

which demonstrations the efficacy of executed ML algorithms in the study for both the 

sites. The optimal results of applied algorithms are marked with bold text and poor 

performing in italics in the table below. The density distribution plot and scatterplot for 

test data y_test and predicted data y_pred have been presented in figures 4.7 & 4.8 for 

Vengurla site and figure 4.9 & 4.10 for Mormugao site. Figures portrays the visual 

synopsis of the accuracy achieved by applied algorithms for each dataset in both sites. 

The plot of regression, scatter plot of y_test versus y_predict, and distribution plot of 

actual & predicted bathymetry has been plotted for each algorithm.  

 
Table  4.7: ML Regression Algorithms 

 



77 
 

 
Figure 4.7: The scatterplot of Actual bathymetry vs SDB of Vengurla 
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Figure 4.8. Density Distribution plot of Actual bathymetry (Blue) vs SDB (Red) of Vengurla 
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Figure 4.9: The scatterplot of Actual bathymetry vs SDB of Mormugao 
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Figure 4.10. Density Distribution plot of Actual bathymetry (Blue) vs SDB (Red) of Mormugao 
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The research intended to examine the efficacy of multivariate ML algorithms for SDB 

derivation in highly challenging & complex water. Research findings revealed a few 

implications for using ML to predict SDB. Figure 4.11 & 4.12 below represents plots 

of accuracy assessment for all utilized algorithms of two different sites. The MLR and 

GPR have better performance in all three datasets in both sites.  

The decision tree algorithms have proven to performed well except their one 

estimator MAE was substantially high for all three datasets except for RF in site 

Mormugao. The MLR and GPR are more robust for the spectral bands of these satellites 

in respect to both the error estimate RMSE and MAE. Overall, the accuracy of all the 

algorithms is substantial for such complex waters. The GPR and RF have outperformed 

providing the best predictive accuracy in both sites respectively. The Landsat-8 dataset 

with the application of the GPR algorithm result shows in R2 of 0.94; RMSE with 1.53 

m and MAE of 1.14 m using all the visible spectrum bands at Vengurla Site. Whereas 

at the Mormugao site Sentinel-2 dataset using all the visible spectral bands in the RF 

algorithm resulted in the predictive accuracy R2 0.97, RMSE of 1.23 m and MAE with 

1.21 m. 

 

Figure 4.11: The comparison of R2, RMSE, & MAE for Vengurla  

 



82 
 

 

Figure 4.12: The comparison of R2, RMSE, & MAE for Mormugao 

 

In this study, we examined how the empirical ML algorithms applied to high-resolution 

satellite imagery can significantly improve SDB estimation, without the need for any 

biophysical parameter. This work demonstrated effectiveness of ML in estimating SDB in 

such complicated coastal waters with variations in water column characteristics and 

undersea terrain, resulting in a significant concentration of outliers in the data. This study 

reveals that out of six different algorithms implemented in this study GPR and RF show 

better predictive accuracy. 

 The prediction accuracy between the actual and predicted SDB achieved is very 

high at 0.97 and 0.94 for two complex sites. RF has been proved to be an optimal ML 

technique suitable for building regression models to estimate SDB. In comparison to other 

empirical models, RF, SVR and GPR have been found persistent to create more flexible 

and precise predictions. Few methodological limitations of research include, i) timespan 

disparity between in-situ & satellite data, ii) Tidal movement's influence on the nearshore 

region, ii)  distribution and sediment trails and their effect on SDB. Although there 

is time gap between in-situ bathymetry and satellite data, may not have substantial impact 

on SDB as the later is reduced to chart datum and corrected for effect of tide.  
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4.4 BATHYMETRY- SATCORE DATA ANALYSIS 

 

  4.4.1 Data Descriptive Statistics 

Table 1 represents the details of SATCORE and Satellite Data used in the study at the 

Kochi site, and Table 2 below demonstrates the descriptive statistics for all the 

parameters that were included in the study. The data for each event of SATCORE shows 

measurements of parameters: Minimum value of the parameter, Maximum value of the 

parameter, Mean and Median of each parameter of the dataset, Range, Standard Error 

(SE), and Standard Deviation (SD) for n number of measurements. The descriptive 

statistics help understand the total distribution and variability of parameters in the study 

area. 

Refer Table 1 here from Appendix 1 

Refer Table 2 here from Appendix 1 

 

4.4.2 Correlation Matrix 

The Correlation (r) measures the degree and path (positive/negative) relationship of two 

variables, which may range from -1 to 1.  - -0.3 to 

+ 0.3) shows Weak relation, (- 0.5 to - 0.3 or 0.3 to 0.5) shows Moderate, (- 0.9 to - 0.5 

or 0.5 to 0.9) shows Strong relation, wherein (- 1.0 to - 0.9 or 0.9 to 1.0) shows very 

strong association (Gujarati, 2003). The resultant correlation matrix is shown in Table 

3 for each event of the SATCORE date. 

The correlations among the variables indicate larger spatiotemporal variations 

in the dataset, except for a few of the parameters that have shown a consistent 

relationship to respective satellite scenes. The variables that were correlated to 

bathymetry in most of the events are; Chl, TSM, and Turbidity. The satellite data shows 

that bandwidth 561 has shown a very strong association with bathymetry in all scenes 

and is highest in all scenes, followed by bandwidth 479. All the correlations among 

variables are found to be very scene-specific and thus cannot be comprehensively 

commented on for the distribution in coastal seawater. 
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Refer Table 3 here from Appendix 1 

4.4.3 Regression Modelling of all Parameters 

Regression analysis provides a scientific explanation of the relationship among the 

variables. This method is used to forecast the dependent-variable (y) for the given 

independent-variable (x /univariate/simple linear regression) or the set of independent 

variables (x1, x2, x3 n / Multivariate/multiple linear regression). It is also useful for 

identifying and controlling the confounding factors in the association of dependent & 

residual errors (also called Sum of Squares) and verifies slope of the regression line is 

zero for each independent variable. Thus, these residuals may be construed as the 

different types of selecting regression depend on the data type, and nature of the 

problem; like linear regression (continuous variable), and logistic regression 

(categorical variable). We have used SPSS statistical package for applying regression 

models, namely; Linear, Logarithmic (initially growth/decay accelerates rapidly then 

slows down), Inverse (refers to inversely predicting independent variables), Quadratic 

(assess the equation of a parabola to best fit the dataset), Cubic (polynomial of degrees 

3), Compound, Power (dependent variable is proportional to independent variable 

raised to a power), S (power to squared), Growth (based on the growth model), and 

Exponential (growth begins slowly and then accelerate till rapid decay). The regression 

models were applied using SPSS (ver. 25), and the resultant coefficient of 

determination r2 (refers to the proportion of the variation that varies from 0 to 1 of the 

dependent variables explained by the model) has been shown in Table 4. The greater 

the coefficient r2, the superior the regression model. An overall score above 0.7 is 

usually considered a good prediction estimate.  

The most basic interpretation of a regression model is more meaningful with a 

graphical representation of the model. The regression coefficients between bathymetry 

and all independent variables can be easily comprehended if depicted by the scatterplot. 

The scatterplot for each regression model is shown for all the variables in additional 

images placed in Appendix II. The result shows that bandwidth 561 has shown the 

highest and mostly more than 0.85 prediction accuracy using a polynomial (cubic) 
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predictive accuracy ranging between 0.5 to 0.7 for all the scenes. Among other 

SATCORE parameters, only a few have shown a consistent predictive relationship 

between 0.2 and 0.5 in most of the events, which include; Chl, TSM, and Turbidity. 

Refer Table 4 Here from Appendix 1 

Refer Images:  Appendix II 

4.4.4 Predictor Analysis 

The satellite bandwidths having similar predictive accuracy may lead to multi-

collinearity (referring to the presence of more than one precise linear association of a 

few or all independent-variables) in an applied regression model. While carrying out 

Multiple regression modelling, one of the assumptions is to avoid multi-collinearity 

among the explanatory variables. The best empirical analysis provides a solution to 

generate a model with the fewest required predictors. The predictor analysis is carried 

out using best subset regression in Minitab (v. 18) to compare different regression 

models. Minitab continuously selects the best-fitting models with one predictor, then 

two predictors, and so on for n predictors. The best-fitting models have the highest R2 

values. R2, SE, and Mallows' Cp criteria were used for assessing the best predictive 

accuracy of the model. Table 5 shows the results of multiple regression with R2 and SE 

for each event. The predictor analysis shows that bandwidth 561 is a vital predictor of 

multiple regression, which has a predictive accuracy of more than 75% alone in all the 

scenes. The accuracy of the model increases with a decrease in values of Mallows' Cp 

and SE and an increase in variables in the model. In most of the scenes, the regression 

model was at saturation using 6-7 variables in the regression model. Further increasing 

the variables in the model marginally increased the value of R2 and reduced the values 

of Mallows' Cp and SE. The most important parameters from the predictor analysis, in 

decreasing importance as per their frequency of occurrence in predictor analyses are; 

 

The adjusted R2 -

is lesser than 0.05, it indicates the relationship to be significant at the 95% confidence 

interval, as shown in the ANOVA result shown in Table 6. Table 6 shows the F-value, 

which indicates higher variations in a sample, such that the higher the F-value, the lower 
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is the p-value (p-value that decides whether the model as a whole and each of the 

predictor variables are significant). The result of the ANOVA shows the significance 

of all the variables in the model and also the significance of the overall regression 

model. Most of the variables in all the scenes have a p-value is less than 0.05, except 

that most of the variables in the study influence bathymetry but need more detailed 

analysis to identify their confounding effect in regression analysis. 

Refer Table 5 Here from Appendix 1 

Refer Table 6 Here from Appendix 1 

Though SDB was developed in the late 1970s, it was not thought to have any 

application in operational bathymetry retrieval until the last decade. Advances in space 

technology for higher resolution, MS bands, open-source availability, etc. have 

enhanced its potential to be used as source hydrographic data. The application of 

various remotely sensed data for coastline delineation is becoming more common in 

surveying as a cost-effective source of information. It is now getting more accepted not 

only as an operational exploration instrument but also as a sophisticated technology 

capable of giving calibrated and validated depths to mariners while utilising very few 

resources. 

Most of the studies in the SDB literature have considered clear (CASE-I) waters 

where the impact of backscattering is minimal and EMR and light travel deeper in the 

water. However, the SDB model established in clear water cannot be directly applied 

to turbid (CASE-II) waters because of the difference in absorption and backscattering 

properties of water. This study was carried out in the highly turbid region of Kochi; the 

higher level of sediment in such a region causes stronger backscattering. The result 

indicated that among the other OAS, Chl, TSM, and Turbidity are consistent in 

predicting bathymetry along with the green and blue bands of Landsat data. 

 

4.4.5 Summary 

The following vital implications can be concluded for further progress of study from 

the results achieved in this section.  
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i) To date, none of the SDB research has focused on assessing the influence 

of all the bio-optical parameters while the derivation of SDB. The primary 

reason for the dearth of such analysis is a rare opportunity to have data on 

bathymetry, sea-water constituents, and temporally proximal satellite data. 

The INCOIS, India SATCORE project has provided an opportunity to carry 

out an analysis of various OAS distribution and variability in the near-shore 

coastal region. Each OAS variable was regressed against the bathymetry to 

understand its dispersal throughout the study area. It was found that 

Landsat-7 & 8 visible spectrum bands are highly correlated to bathymetry 

as well as each other.  

ii) Therefore, to avoid multicollinearity among the satellite bands and OAS, 

the predictor analysis was carried out based on three important statistical 

criteria r2 th each 

independent variable and predictor analysis indicated that Landsat-7 & 8 

Bandwidths 561 & 479, Chlorophyll, TSM, and Turbidity are vital variables 

in bathymetry estimation.  

iii) The findings of this research are preliminary in nature on addressing the 

influence of Chl, TSM, and turbidity on bathymetry and, in turn, SDB. 

These findings can provide valuable input on the selection of the best scenes, 

developing SDB models grounded on weight or corrections based on Chl, 

TSM, and Turbidity over dynamic coastal waters.  

The next stage of research focused hereinafter on only parameters; Bathymetry, 

B1_443, B2_483, B3_561, B4_655, B5_865, CHL, TSM, & TURBIDITY for 

developing the SDB model. 

 

4.5 SDB AND OAS ANALYSIS 

4.5.1 Descriptive Statistical Analysis 

The table below demonstrates the descriptive statistics for all the data included in the 

study for the site Kochi as of February 13, 2015. This date dataset was chosen due to 

the most synchronous satellite pass and SATCORE data collection time. The data for 

each event of SATCORE shows measurements of parameters: Minimum value of the 
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parameter, Maximum value of the parameter, Mean and Median of each parameter of a 

dataset, Range, Standard Error (SE), and Standard Deviation (SD) for n number of 

measurements. The descriptive statistics help understand the total distribution and 

variability of parameters at the study site. 

Table 4.8: Descriptive Statistics of data for site Kochi on 13.02.2015 
13022015-n=368 Bathy B1_443 B2_483 B3_561 B4_655 B5_865 CHL TSM TURBIDITY 

Mean 19.555 0.075 0.074 0.062 0.043 0.026 1.062 3.428 3.337 

SE 0.597 0.000 0.001 0.001 0.001 0.000 0.014 0.031 0.039 

Median 18.699 0.074 0.073 0.057 0.039 0.024 0.996 3.351 3.275 

SD 11.449 0.008 0.010 0.017 0.012 0.007 0.262 0.597 0.739 

Range 41.091 0.037 0.044 0.064 0.052 0.045 1.207 2.515 3.392 

Minimum 0.309 0.060 0.056 0.039 0.027 0.015 0.583 1.990 1.426 

Maximum 41.400 0.097 0.100 0.103 0.079 0.060 1.791 4.505 4.818 

 

4.5.2 Correlation Matrix 

The resultant correlation matrix is shown in Table 4.9 for each event of the SATCORE 

data for 13.02.2015 at Kochi

 

Table 4.9: Correlation Matrix for all the variables in the study 
13022015 Bathy B1_443 B2_483 B3_561 B4_655 B5_865 Chl TSM Turbidity 
Bathy 1.000 

        

B1_443 -0.835 1.000 
       

B2_483 -0.906 0.985 1.000 
      

B3_561 -0.921 0.951 0.980 1.000 
     

B4_655 -0.858 0.937 0.947 0.978 1.000 
    

B5_865 -0.810 0.930 0.922 0.933 0.970 1.000 
   

Chl -0.485 0.418 0.468 0.472 0.385 0.274 1.000 
  

TSM -0.272 0.491 0.455 0.436 0.452 0.468 0.069 1.000 
 

Turbidity -0.438 0.507 0.532 0.507 0.430 0.357 0.789 0.581 1.000 

 
4.5.3 Result of SDB Algorithms and Cross-validation 

The SDB algorithms; Linear, RF, and SVR were developed for each scene dated 

13.02.2015 and 16.12.2015 using all four bands. However, each of the model was cross-

validated in both scenes. Table 4.10 below shows the result of the cross-validation 

application of SDB algorithms across both scenes. The RF and SVR algorithms have 

shown better accuracy in terms of all three criteria R2, RMSE, and MAE than the linear 

algorithm. The SVR algorithm has shown predictive accuracy of R2 0.92 with the 

lowest MAE of 2.07m. The Landsat-7 data for 16 Dec 2015 was used for cross-
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validation of the developed algorithm. However, when cross-validated linear 

algorithms perform consistently across all the scenes, wherein both RF and SVR show 

inaccurate predictions with large errors. The SDB residuals were derived for each pixel 

for analysis with OAS. 

Table 4.10: Result of SDB Algorithms 
ALGORITHM TESTED 16 Dec 2015 13 Feb 2015 
DEVELOPED Method R2 RMSE MAE R2 RMSE MAE 
 
16 Dec 15 

LINEAR 0.86 4.01 3.24 0.69 6.01 4.52 
RF 0.90 3.28 2.21 0.47 7.84 6.28 

SVR 0.88 3.63 2.26 0.01 10.75 9.43 
 
13 Feb 2015 

LINEAR 0.79 4.89 3.98 0.85 4.18 3.27 
RF 0.38 8.49 7.50 0.90 3.28 2.26 

SVR 0.48 7.75 6.21 0.92 2.95 2.07 

 

Figure 4.13 below depicts the bathymetric map of the area as well as the SDB map 

derived by applying Linear, RF, and SVR regression. The SVR regression has the best 

predictive accuracy of R2 0.92 with the lowest MAE and RMSE values. The general 

trends of changes in depth areas are well captured by the SDB algorithm using only 438 

discrete point data points. The SVR-derived SDB map shows a very close resemblance 

to a bathymetric map of the area. However, The SVR regression algorithm was site-

specific and performed very poorly when applied to other sites. wherein the RF 

algorithm, when applied to other sites, performed better than SVR. Therefore, the SVR 

algorithm was used for further development of the SDB model. 
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Figure 4.13: Result of SDB derivation using Linear, RF, And SVR algorithms 

4.5.4 Validation of Satellite-Derived OAS 

The coastal areas have a very dynamic nature, and the concentration of seawater 

constituents varies very rapidly. In-situ data reliability is very vital for the validation of 

satellite-derived products, e.g., Bathymetry. To overcome the time lag between in-situ 

SATCORE data and satellite pass time, various algorithms were tested for validating 

OAS with temporally proximal SATCORE data, including Chl (Saberioon, Brom, & 

Soucek, 2020; Wang et al., 2017); TSM & Turbidity by Wang et al., (2017), who 

tabulated and tested more than 20 algorithms, TSM & Chl (Avinash et al., 2012; 

Molkov et al., 2019); and Turbidity (Dogliotti et al., 2015; Nechad et al., 2010). The 

best-suited algorithm for the study site is for Chl with R2 0.72 using Molkov et al., 

(2019), for TSM with R2 0.69 using Molkov et al., (2019), and for turbidity with R2 

0.63 using Nechad et al., (2010). The results of the validation study reach the inference 

that Landsat data has the ability to provide a prediction of Chl, TSM, and Turbidity 

with significant accuracy. The scatterplot of in-situ SATCORE data (Kochi date: 

13.02.2015) and satellite-derived OAS for Chl, TSM, and Turbidity is shown below in 

Figure 4.14.  
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Figure 4.14: Graphs showing validation of Satellite-Derived OAS 

 

The ultimate purpose of this study is to derive OAS for analysing the SDB residuals 

rather than developing or testing OAS algorithms, as there is a time lag between satellite 

image pass time and SATCORE data collection time. The coastal areas are very 

dynamic, and therefore the concentration of OAS varies rapidly. As the study area is a 

navigable channel and a creek, it has severe impacts from low and high tides, which are 

semidiurnal in nature at Kochi. The OAS collected during a particular time of day will 

vary with each of high and low water. Therefore. It was paramount to validate the OAS 

derivation with satellite data. The time-synchronous satellite data and SATCORE data 

on 13.02.2015 was better opportunity for this analysis. 

Figure 4.15 depicts the map of interpolated and satellite derived Chl, TSM, & Turbidity. 

The map shows the derived OAS has better variation in distribution through the study 

area and, moreover, provides a better visual result than interpolation. Moreover, as a 

general fact, the values of turbidity, TSM are much higher along the coast, gradually 

decreasing from coast to seaward. Thus, the result of SATCORE's collected and 

satellite-derived OAS was accepted based on validation and visual interpretation. 
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Figure 4.15: The IDW interpolated verses Satellite-Derived OAS distribution 

 

4.5.5 SDB Residuals and OAS 

The OAS has a severe impact on remote-sensing reflectance, which produces residual 

shoaling bias mainly caused by Chl, TSM, and turbidity (Ashphaq et al., 2023). The 

optimal scene selection for SDB is highly qualitative in nature (Caballero & Stumpf, 

2020), and to overcome this limitation semi-empirical algorithms that consider the 

influence of OAS are needed. The primary aim of this study is the interpretation of 

errors i.e., SDB residuals that have been estimated above/below RMSE in relation to 

Chl, TSM, and Turbidity in order to develop a semi-automated SDB model. The SDB 
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residuals were derived for each pixel by validating against in-situ data. The SDB 

residuals were reclassified using the QGIS tool 'Reclassify by table' as per the 

classification values shown in Table 5 below. The SDB residuals were classified into 

two categorical variables 1- SDB residuals within the RMSE limit of ± 2.5m and 2-

SDB residuals which are above or below the RMSE of ± 2.5 m. The IHO S-44 standard 

specifies the depth accuracy IHO-CATZOC of C or lower as 2.0 m + 5% of depth, 

therefore 2.5m was used as a threshold for classification for depth range 0-41 m. The 

other OAS was categorized based on concentration in satellite-derived OAS images 

into three equal interval categories Low, Medium, and High as reflected in Table 4.11 

below.  

Table 4.11:  Analysis of categorical variable OAS and SDB Residuals 
All Categorical Variable Information    OAS Above/Below RMSE 

N = pixel in image (13022015) N Percent  N Percent 
SDB Residual 

 - -
RMSE 
 -
RMSE 
 
RMSE 

Within RMSE 625870 74.9%    
Above/below 

RMSE 
210020 25.1% Above/below  

RMSE 
210020 100% 

Total 835890 100.0%    

TSM 
  
  

 

Low 449148 53.7% Low 98865 47.0% 
Medium 377734 45.2% Medium 102179 48.6% 

High 9008 1.1% High 8976 4.2% 
Total 835890 100.0% Total 210020 100% 

Turbidity 
  
  

HIGH 

Low 32790 3.9% Low 6093 2.9% 
Medium 691602 82.7% Medium 177724 84.6% 

High 111498 13.3% High 26203 12.4% 
Total 835890 100.0% Total 210020 100% 

Chl 
  
  
  

Low 5915 0.7% Low 5413 2.5% 
Medium 596959 71.4% Medium 160146 76.2% 

High 233016 27.9% High 44461 21.1% 
Total 835890 100.0% Total 210020 100% 

 

The evaluation of the classification of OAS in two different classes of SDB residual 

product is shown in Table 4.11 which shows that for Chl and Turbidity most of the SDB 

residuals estimated erroneously are distributed in areas of moderate and high 

concentration pixels. Wherein, TSM has been found distributed equally in low and 

moderate concentration areas. The majority of research in the SDB literature has 

focused on pure and transparent (CASE-I) waters, where there is less backscattering 

and radiation has an ability to penetrate much deeper into the sea water. Owing to the 

differences in absorption and backscattering characteristics of water, the SDB model 
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developed for high level of clarity of water cannot be easily applied to turbid (CASE-

II) waters.  This research focuses on a very turbid area, where the greater the 

concentration of sediments creates more backscattering. The few factors responsible 

for light backscattering and absorption have been investigated with bathymetry by 

researchers of this study and it was found that Chl, TSM, and Turbidity were the few 

factors that influence SDB derivation using INCOIS SATCORE data.  This study 

examined the influence of three OAS and quantified their effect on erroneous SDB 

retrieval. The influence of OAS was categorized into three classes; Low/Medium/High; 

it was found that the most of the SDB residuals which are above or below RMSE level 

of 2.5 m were distributed within moderate and high OAS.  

 
Figure 4.16: Distribution of SDB residuals and concentration of OAS 

(SDB: 1(Blue) -Within RMSE, 2 (Red) -Above/Below RMSE;  
OAS: 1 (Blue) -Low, 2 (Yellow)- Medium, 3 (Red) -High) 

 

The figure above shows SDB residuals and OAS classified as per the details provided 

in Table 5. The SDB residual image depicts that the SDB derivation is more precise for 

a depth range of 0 20 m, beyond which errors in the derived SDB are unevenly 

distributed in the study area where the depth range is 20 m to 40 m. The concept of 



95 
 

TSM, and Turbidity were categorized into three classes as per the concentration in 

satellite-derived products. It is visible in all three images that the concentration range 

of medium and high OAS is highly related to overestimated/underestimated SDB 

values. 

Figures 4.17 & 4.18 below show the frequency of OAS and the histogram of 

OAS distribution in three classes, of which most of the erroneous residuals are located 

in medium and high OAS. The high class of all three OAS has fewer pixels, but most 

of them have extreme outlier values. The histogram shows the presence of high values 

of TSM, and Turbidity is associated with a skewed underestimation of SDB up to -15 

m. 

 

 
Figure 4.17: OAS Classification and SDB residuals 
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Figure 4.18: Histogram of three classes of OAS with SDB residuals. 

 

This study is an important attempt to address the effect of OAS, especially Chl, TSM, 

and turbidity, on SDB. The ultimate study objective was to examine and quantify the 

presence of OAS to enhance SDB estimation. The study aims to quantify the errors in 

SDB prediction based on the OAS so that a more robust predictive model to 

operationalize the SDB in practice may be developed. The SATCORE parameters and 

satellite data have a time gap that was addressed before using the OAS data or analysis 

of errors in SDB estimation. This was achieved for only three OAS; Chl, TSM, and 

Turbidity. More than 30 different algorithms were tested to validate satellite-derived 

OAS products, and finally, three algorithms were identified that closely match in-situ 

validation data. The SDB was derived using three different ML algorithms; Linear, RF, 

and SV Regression. The SVR and RF algorithms provided optimal results for the given 

scene, with the lowest RMSE and MAE. However, RF was found to be more effective 

when applied to different sites than actually it was originally developed for. The SDB 

residuals were classified into two classes; within the RMSE limit of 2.5 m and 

erroneous above/below the RMSE limit of 2.5 m. The OAS concentration, categorized 

into low, medium, and high, was examined with respect to the SDB residual class. It 
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was found that most of the SDB residuals were distributed in areas with medium and 

high concentrations of OAS. Research findings suggest several valid implications for 

future research, which include; examinations of OAS influence on the selection of 

satellite imagery for SDB, assigning weight to the pixels whose reflectance has been 

diminished instigated by OAS, and further development of a bio-physio-optical model 

for SDB by collecting bio-physical parameter data concurrent with satellite pass time. 

This study advocates incorporating satellite-derived OAS data into SDB retrieval to 

enhance the ability to retrieve bathymetry and the utility of the RF algorithm to cross 

validate results in different scenes. The main limitation of this study is that it is purely 

empirical, and secondly, there is an absence of field spectral data to develop a semi-

empirical SDB model. 

 

4.6 DEVELOPMENT OF MRF 

The following four case studies at sites in Okha, Gopalpur, Chennai, and Kochi were 

carried out in this stage of research to analyse the performance of the RF algorithm in 

SDB derivation. The OAS and satellite dataset were key inputs provided to the applied 

ML algorithm. We have derived all three OAS as per the algorithms mentioned in the 

previous section, and these three OAS (Chl, TSM, and Turbidity) were included in 

further data processing to enhance SDB estimation accuracy by considering the effect 

of the above three OAS in coastal waters. The SDB derivation has been carried out 

using raster as well as vector data points. 

Table 4.12 below summarizes the performance of the individual RF algorithm 

in each site using an algorithm developed site-specific and followed by an MRF model 

created using merging RF algorithms (as explained in Section 3.2.6) and then cross-

validating in each site.  The table below compares the results using the site-specific RF 

algorithm and finally developed the MRF algorithm by merging all the .pkl files and 

evaluating them using the indices R2, RMSE, and MAE.  
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Table 4.12 Implementation of Merged RF algorithm 

DATE N R2 RMSE MAE MIN MAX For test data 
Okha, Depth Range -1.56 TO 58.12 

12.02.2017 1211070 0.834 5.762 4.415 -1.34 55.37 0.911 
MRF 1211070 0.24 6.44 4.97 -1.0 36.98 0.269 

27.11.2015 1211070 0.749 6.232 4.57 -1.31 55.78 0.784 
MRF 1211070 0.21 4.70 3.55 1.8 32.65 0.42 

31.03.2015 1211070 0.695 7.748 6.094 -0.6 55.39 0.806 
MRF   1211070 0.47 4.40 3.54 -1.2 50.90 0.58 

GOPALPUR, Depth Range -1.29 TO 93.8 
17.03.2015 1617875 0.95 5.225 3.182 0.17 85.27 0.933 

MRF 1617875 0.82 9.364 6.325 0.12 82.53 0.854 
22.03.2013 1555667 0.735 11.551 7.305 0.0 85.09 0.688 

MRF 1617875 0.524 20.77 16.56 0.17 87.23 0.59 
25.01.2015 1617875 0.770 10.743 6.309 1.37 53.30 0.735 

MRF 1617875 0.636 18.62 14.58 0.17 81.00 0.645 
CHENNAI, Depth Range 0.0 TO 23.39 

08.11.2013 111136 0.939 1.857 1.239 0.0 22.99 0.951 
MRF 111136 0.45 3.90 2.63 2.09 38.03 0.59 

27.03.2014 111136 0.942 1.86 1.349 0.0 22.28 0.913 
MRF 111136 0.515593 2.664 1.855 0.93 22.12 0.64 

08.10.2013 111136 0.852 2.567 1.781 1.60 23.13 0.862 
MRF 111136 0.740 3.824 3.224 0.3 35.69 0.689 

KOCHI, Depth Range 0.14 TO 41.22 
02.11.2011 840907 0.898 3.321 2.125 0.72 38.95 0.932 

MRF 903158 0.593 6.60 4.40 0.7 38.12 0.900 
04.12.2013 840907 0.964 2.040 1.265 0.41 40.34 0.984 

MRF 903158 0.559 9.43 7.10 0.98 39.07 0.765 
13.02.2015 840907 0.902 3.174 2.291 0.46 39.47 0.957 

MRF 903158 0.23 11.7 10.3 1.58 36.00 0.30 
14.02.2012 840907 0.90 3.304 2.218 0.95 39.73 0.939 

MRF 903158 0.51 5.309 3.88 11.02 35.26 0.782 
16.12.2015 840907 0.924 2.86 1.757 0.54 38.00 0.980 

MRF 903158 0.375 3.966 2.595 2.45 37.74 0.514 

 

The area covered in each scene ranges from 100 Sq. Km to 1400 Sq. km, and the depth 

ranges from -1m to 90m. The study area considered in this study was relatively large 

compared to any previous SDB studies. Besides, there are hardly any studies that have 

advocated and tested SDB for depths greater than 50m. This study has considered a 

depth range up to 90m at the Gopalpur site. Besides, there was a huge dataset of ground-

truth data available for training and testing algorithms. The processing time for each 

run of the RF algorithm was less than 5 seconds for the configuration of the machine 

(Intel Core i5 processor, 2.60 GHz processor speed, 8 GB RAM, 4 GB graphics, and 1 

TB hard disc). 

The results achieved by this study have been further discussed in light of 

existing literature in the next chapter. 
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CHAPTER 5 DISCUSSION 

 

For many Blue Economy prospects, a thorough understanding of bathymetry and 

seafloor topography is essential. However, as was previously said, due to the erratic 

nature of coast topography, conducting hydrographic/bathymetric surveys in 

complicated areas such as Vengurla is challenging and also requires significant 

valuable resources in addition to the danger to both people and equipment. Although 

the SDB is being studied for years as an alternate to hydrographic surveys, its 

application in muddy or turbid water & complicated locations is still difficult. This 

chapter highlights the discussion of the findings from each of the six research phases 

covered in the preceding section on methodology. 

5.1 SDB ALGORITHMS & TRANSFORMS 

This research sought to estimate SDB at a location that was both very difficult 

because there are abundant underwater rocks and nature is highly turbid in the Karli 

River's mouth. Finding an appropriate satellite band and precise transform for SDB 

estimate was the main goal of the research's early phase. By comparing the 

bathymetric information with each transform performed, a correlation analysis was 

conducted to determine the optimal band. After analyzing the coefficients of 

correlation for each band, it was discovered that the green band was far more strongly 

connected with bathymetry than all the other bands. This conclusion is in line with 

earlier work on remotely sensed that described how light is attenuated in water and 

how the green channel near 561 nm is useful for SDB (Caballero et al., 2019). In 

comparison to other bands, the green channel at (561 nm) has better relationships to 

bathymetry since its very sensitive to factors like CDOM and particulate in the water. 

The SDB method was implemented using many transforms, including the two 

mostly applied Log-linear & Ratio-transform. Log-linear transformation is 

significantly more linked with bathymetry compared to the other satellite bands. 

Ratio-transform had poor marginal performance, showing that it is less useful in 

severely murky water. This proves compatible with the hypothesis of exponential 

degradation of EMR in water with variable dissolved substance and also turbidity 
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distribution. The ML was applied to all satellite datasets, and the results demonstrated 

that RF shows the highest predicted accuracy using Landsat-8 data.  

This illustrates how ML algorithms are better than alternative approaches. 

Additionally, ML techniques are very beneficial for large datasets like the MBES 

dataset, which is larger in size than point samples in a given data set. Through using 

the GeoPandas package, the RF technique was used to produce the final SDB map 

from the data set. To compute the probability plot and histogram of in-situ bathymetry 

and SDB, all samples were retrieved. According to the probability plot and histogram, 

predictions are more accurate until a depth of 20 meters before they start to 

dramatically worsen. When the resulting SDB map has been compared to the area's 

real bathymetry, a few highly intriguing results were discovered. 

Even though analysis revealed RMSE as well as MAE range between 02 to 03 

m, in most of the geographical area, with the exception of the submerged rocks area 

and near the river mouth, revealed a variation in SDB and water depth of less than 

2m. The undersea rocky section has demonstrated a variance of approximately 05m in 

estimate against real bathymetry. The estimating technique failed dramatically in the 

severely murky water of the Mouth of the river, with a range of more than 10m. This 

shows that SDB ML algorithms alone may not be sufficient in such areas of severely 

turbid water and that more examination of the water column features may be required. 

 

5.2 UNIVARIATE ML  

The study sought to assess the efficacy of basic, non-linear, and robust 

regression methods in SDB determination in rather complicated waters. The findings 

have shown significant observations for using ML in SDB prediction. The sample 

distribution has shown a substantial influence on the prediction model. The larger 

amount the of training data, the better the outcome. This study's findings support the 

'Pareto Principle' of splitting training to the testing samples in 80 - 20 proportion, 

which is preferable in complicated study areas. This is especially important in 

complicated research sites such as site A, in which the distribution of depth sample is 

relatively uneven spatially and the estimation of results is heavily reliant on the 

equally distributed spatial datasets. Predictive performance in such a complicated 

region needs a high number of samples to create a broader and more robust SDB 

model. According to this study's findings, an 80 - 20 train-test ratio is recommended. 
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The results demonstrate that increasing the sample size increases R2 significantly for 

ASTER & Landsat data, but just minimally for the Sentinel data for site B. With a 

modification in sample size, the RMSE & MAE measures show a significant 

variation. With an increment in the training sample, both indices have decreased 

significantly. 

Sensitivity analysis is carried out to establish the ideal sample size needed to 

calculate SDB using regression between bathymetry and the Rrs of the spectral band. 

During the sensitivity analysis, the MAE is employed as a performance measure. At 

Mormugao & Vengurla, the testing and training data sizes were employed at a ratio of 

1-3, with the training sample increasing eventually from 50-400 for each. The 

outcome showed that sample sizes greater than 200 depth values for training did not 

further improve the outcome. According to the sensitivity study, the indicators MAE 

was sensitive towards the best choice of a sample of the training data about 200 depth 

points, and the GPR method works at its best in all situations using various satellite 

data. This suggests that non-linear techniques are required for SDB investigations, 

maybe as a result of the variable character of undersea topography.  

An unbiased regression calculation, and eliminating outliers have been advised 

in a few prior SDB research carried out by Favoretto et al., (2017); nevertheless, in 

complicated water regions, the potential of using predictive ML models to improve 

SDB estimate is lost. For the estimated SDB outlier analysis, SDB derived from the 

best-performing ML results was employed. WEKA tools were used, and the outliers 

& data were found in accordance with the procedure described previously. To 

evaluate the spatial geographical patterns of outliers, the detected outliers were 

mapped against the Sentinel's 0.665 band, which has been demonstrated to be 

successful in detecting sediment plumes in coastal seas. The outliers were mainly 

found in a particular region of the research area, on a sandy beach near Vengurla, and 

in a few plumes in the region (Ashphaq, Srivastava, & Mitra, 2022). This means that 

the intertidal zone, particularly beaches and shallower regions close to the coastline, 

needs special consideration while processing data because they were not disguised as 

land features due to lower Rrs. The bathymetric chart for the area was superimposed 

on the resulting image, and it was discovered that around 80% of soundings fell 

within the same depth zone. Other soundings, on the other hand, are dispersed 

unevenly around the chart, with the majority of them being concentrated in a single 
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location or depth zone. The regional patterns in bathymetry were followed by the 

general contour trends. 

In both study sites, R2 values for the implemented ML regression algorithms 

were evaluated by comparing, it was discovered that SLR significantly outperforms 

the other applied robust ML algorithms. However, the non-linear GPR has performed 

best in both study areas, with results for site A being R2 of 0.87, RMSE of 1.77m, and 

MAE of 1.27m using the ASTER data, and site B being R2 of 0.91, RMSE of 1.51m, 

and MAE of 1.17m by using Sentinel-2 data. Several researchers have used traditional 

techniques to examine the SDB for turbid water at quite shallow water below 5 meters 

(Bramante et al., 2013). Few prior researchers have employed ML techniques, and the 

usage of ML in SDB is only a few years old. Several researches have tried SDB in 

very turbid and complicated locations, however, the results of the used algorithms, 

like RF, NN, as well as other ML, were also quite unsatisfactory even at a depth of 6 

meters (Hassan & Nadaoka, 2017). Some research has used well-known methods to 

determine bathymetry in the Indian context for depths up to a depth of 6 m (Jawak & 

Luis, 2015) as well as a depth of 10 m (Pushparaj & Hegde, 2017), where the error 

was noticeably higher than in our work. As a result, based on the results of this study, 

we may suggest using ML algorithms rather than traditional techniques. Moreover, 

the SLR technique yields superior results to commonly used linear univariate 

algorithms. The non-linear GPR approach, however, delivered the optimum outcome 

for this investigation. This research, which is possibly the first of its kind, examines 

bathymetric mapping for calculating depth in coastal waters. According to the study's 

findings, regression models have the ability to replace bathymetric surveys for 

navigable as well as non-navigable water when employing optical RS data to 

accurately measure depths in even complicated seas. However, to validate the use of 

optical satellite data, at minimum a few in-situ depth data are required. ICESat-2 

Onboard ATLAS is a LIDAR which had recently been utilized as a replacement for 

echo-sounding depths for validation (Parrish et al., 2019; Forfinski-sarkozi & Parrish, 

2016; Quilleuc et al., 2021). It could offer a solution to field measurements with 

growth in data coverage all across the world, but its utilization may be restricted to 

clean & transparent water as previously Thomas et al., (2021) demonstrated that the 

ICESat-2 dataset was unable to identify depth in the dredged sediment-laden channel. 
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5.3 MULTIVARIATE ANALYSIS  

The model trained for best performing algorithm for each site was saved as a .pkl file 

to apply later on different estimation datasets. The Python Geospatial Data 

Abstraction Library (GDAL) was used to apply trained models on satellite images 

directly. The result was also saved as a .csv file and SDB maps were created using 

Global Mapper software. The SDB maps were draped on charts of the area to visually 

compare the SDB with charted depths. The visual depiction of SDB maps shows a 

very close resemblance to depth areas and depth contours of the navigational chart.  

The study's use of ML algorithms has shown their effectiveness in predicting 

SDB at complicated coastal waters with variable water column characteristics and 

undersea terrain, which generally leads to a significant proportionate number of outliers 

in the data. In environments of turbid & shallow water, the applicable SDB techniques 

have the capability to provide affordable, exact, quick, and adaptable bathymetry estimate 

solutions. This study reveals that out of six different algorithms implemented in this 

study, GPR and RF show better predictive accuracy. The prediction accuracy between the 

actual and predicted SDB achieved is very high at 0.97 and 0.94 for two complex sites. 

RF has been proven to be an optimal ML technique suitable for building regression 

models to estimate SDB. In comparison to other empirical models, RF and GPR have 

been found persistent to create more flexible and precise predictions. The research has 

some serious weaknesses that will be dealt with in subsequent studies, such as the 

discrepancy in the timespan of the collected dataset, the influence of tide surge mostly in 

nearshore areas where a large number of the anomalies were dispersed, and also plumes 

of sediment and its impact on SDB computation. 

 

5.4 BATHYMETRY-SATCORE DATA ANALYSIS 

Though SDB was developed in the late 1970s, hardly it was thought to have 

application in operational bathymetry retrieval till the last decade. Contemporary 

advancements in space technology viz. higher resolution, more MS bands, open-

source availability, etc. have enhanced its potential to be used as an alternative to 

hydrographic data sources. The use of satellite imagery as a cheap source of datasets 

for coastal delineation is also growing in the hydrographic domain. It is now being 

accepted not just as an operational research technique, but also as a sophisticated 

technology that offers validated and calibrated depth data to mariners while utilizing 
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very few resources. Most of the studies in SDB literature have considered clear 

(CASE-I) water where marginal backscattering occurs and EMR can penetrate deep 

inside the water. However, the SDB model established in clear water cannot be 

directly applied to turbid (CASE-II) waters because of the difference in absorption 

and backscattering properties of water. This study was carried out in the highly turbid 

region of Kochi, the higher level of sediments in such region causes stronger 

backscattering. The result indicated that among the other OAS; Chl, TSM, and 

Turbidity are consistent in predicting bathymetry along with green and blue bands of 

Landsat data. 

To date, none of the SDB research has focused on assessing the influence of 

all the bio-optical parameters while the derivation of SDB. The primary reason for the 

dearth of such analysis is a rare opportunity to have data on bathymetry, sea-water 

constituents, and temporally proximal satellite data. The INCOIS, India SATCORE 

project has provided an opportunity to carry out an analysis of various OAS 

distributions and variability in the near-shore coastal region. Each OAS variable was 

regressed against the bathymetry to understand its dispersal throughout the study area. 

It was found that Landsat-7 & 8 visible spectrum bands are highly correlated to 

bathymetry as well as each other. Therefore, to avoid multicollinearity among the 

satellite bands and OAS, the predictor analysis was carried out based on three 

important statistical criteria r2

each independent variable and predictor analysis indicated that Landsat-7 & 8 

Bandwidths 561& 479, Chlorophyll, TSM, and Turbidity are vital variables in 

bathymetry estimation. The findings of this research are preliminary on resolving the 

influence of Chl, TSM, and turbidity on bathymetry and in turn SDB. These findings 

can provide valuable input on the selection of the best scenes, and developing SDB 

models grounded on weight or corrections based on Chl, TSM, and Turbidity over 

dynamic coastal waters.  

 

5.5 SDB AND OAS ANALYSIS 

Even though SDB was invented in the late 1970s, it was not deemed to have any 

application in practical bathymetry retrieval until the last decade. The majority of 

research in the SDB literature has focused on pure and transparent (CASE-I) waters, 

where there is less backscattering and radiation can penetrate deep through the water. 
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For the reason of differences in absorption and backscattering characteristics of water, 

the SDB model developed for clear water may not be easily applied to turbid (CASE-

II) water.  This research focuses on a very turbid area, where the greater concentration 

of sediments creates more backscattering. The few factors responsible for light 

backscattering and absorption have been investigated with bathymetry by researchers 

of this study and it was found that Chl, TSM, and Turbidity were the few factors that 

influence SDB derivation using INCOIS SATCORE data.  This study examined the 

influence of three OAS and quantified their effect on erroneous SDB retrieval. The 

influence of OAS was categorized into three classes; Low/Medium/High; it was found 

most SDB residuals that are above or below the RMSE level of 2.5 m were distributed 

within moderate and high OAS.  

The SDB residual image depicts that the SDB derivation is more precise for a 

depth contour of 20 meters beyond that the SDB errors are unevenly distributed in the 

(Stumpf, Holderied, & Sinclair, 2003) seems more relevant when deriving SDB. The 

Chl, TSM, and Turbidity were categorized into three classes as per the concentration 

in satellite-derived products. It is visible in all three images that the concentration 

range of medium and high OAS is highly related to overestimated/underestimated 

SDB values. The high class of all three OAS has fewer pixels, but most of them have 

extreme outlier values. The histogram shows the presence of high values of TSM and 

Turbidity is associated with skewed underestimation of SDB up to -15 m.  

 
This study is a vital step toward resolving the impact of OAS especially Chl, 

TSM, and turbidity on SDB. The ultimate goal of the study was to examine and 

quantify the presence of OAS to enhance SDB estimation. The study aims to quantify 

the errors in SDB prediction based on the OAS so that a more robust predictive model 

to operationalize the SDB in practice may be developed. The SATCORE parameters 

and satellite data have a time gap that was addressed before using the OAS data or 

analysis of errors in SDB estimation. This was achieved for only three OAS; Chl, 

TSM, and Turbidity. More than 30 different algorithms were tested to validate 

satellite-derived OAS products and finally, three algorithms were identified closely 

match in-situ validation data. The SDB was derived using three different ML 

algorithms; Linear, RF, and SV Regression. The SVR algorithm provided optimal 

results for the given scene with the lowest RMSE and MAE. The SDB residuals were 
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classified into two classes; within the RMSE limit of 2.5 m and erroneous 

above/below the RMSE limit of 2.5 m. The OAS concentration categorized into low, 

medium, and high was examined with respect to SDB residual class. It was found that 

most of the SDB residuals were distributed in the areas of medium and high 

concentrations of OAS. The research provides several novel implications for future 

research which include; examinations of OAS influence on the selection of satellite 

imagery for SDB, assigning weight to the pixels whose reflectance has been 

diminished instigated by OAS, and further development of a bio-physio-optical model 

for SDB by collecting bio-physical parameters data concurrent with satellite pass 

time. This study advocates incorporating satellite-derived OAS data into SDB 

retrieval to enhance the ability to retrieve bathymetry. The main limitation of this 

study is that it is purely empirical and secondly the absence of field spectral data to 

develop a semi-empirical SDB model.  

 

5.6 DEVELOPMENT OF MRF 

Numerous SDB models for enhanced SDB estimates have been described in 

preceding Chapters. Among these, the RF SDB model put forth in the previous 

chapter has demonstrated notable accuracy for SDB derivation. Further 

examination of the RF algorithm in SDB estimation in different scenes was required 

to show the robustness of the model for practical use. The result of previous stages of 

research has indicated that most of the erroneous SDB residuals and extreme values 

were distributed in high or medium-concentrated OAS regions. Therefore, three OAS 

Chl, TSM, and Turbidity were included in further data processing to enhance SDB 

estimation accuracy by considering the effect of the above three OAS in coastal 

waters. The goal of this section was to develop a more robust SDB predictive model 

to operationalize SDB for practical purposes. In this stage of research, we have 

derived all three OAS as per algorithms mentioned in the previous chapter, and the 

same was cross-validated for each event of SATCORE data collection date for each 

study site. Thereafter RF algorithm was utilized for SDB derivation in each site. The 

SDB derivation has been carried out using raster as well as vector data points. Two 

different software packages were used for the purpose. The Open Source ENMAPBox 
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plugin in QGIS for raster data and Jupyter Notebook-based Python IDL was used for 

.csv data.  

Several case studies at different study sites have been conducted using a 

variety of satellite images to assess the RF SDB algorithm. The first case study was 

Vengurla, followed by Mormugao, Kochi, Chennai, Okha, Gopalpur, and finally 

Chennai.  However, the same has not been discussed with reference to each site, but 

an overall analysis of using the RF algorithm and thereinafter merging the algorithm 

and merging the dataset to derive the merged RF algorithm is discussed.  The area 

covered in each scene ranges from 100 Sq. Km to 1400 Sq. Km area and depth range 

varies from -1m to 90m. The study area considered in this study was relatively much 

larger than any previous SDB studies. Besides, there are hardly any studies that have 

advocated and tested SDB for depths more than 50m. This study has considered a 

depth range of up to 90m in the Gopalpur site. Besides, there were available huge 

datasets of ground-truth data for training and testing algorithms, which has helped to 

validate the algorithm in such turbid waters with reasonable accuracy. 

 

5.7 Comparison with GEBCO database-derived Maps 

General Bathymetric Chart of the Ocean  (GEBCO) is a huge dataset prepared from 

bathymetric contours of the oceans originally at a 1:10 million scale. GEBCO Grid is 

Compiled at 30 arc seconds (926.1 meters at the equator) and has Negative meters 

units with WGS-84 as a Horizontal datum & Mean Sea Level as a Vertical datum. 

The derived SDB maps from MRF models were compared against the GEBCO-

derived maps & Bathymetric maps for three sites Chennai, Okha, And Kochi. The 

summary of regression with indices r2 is shown below 

 

Table 5.1: Summary of comparison between GEBCO and MRF maps 

Comparison  Chennai Okha Kochi 
Bathy Vs GEBCO r2= 0.707 r2= 0.7318 r2= 0.7503 

Bathy vs MRF r2=0.802 r2= 0.8725 r2= 0.865 
GEBCO vs MRF r2= 0.703 r2= 0.6522 r2= 0.7606 

 
The depiction of the comparison between the maps is shown below in Figure 5.1-5.3 
as shown below. 
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Figure 5.1 SDB compared with GEBCO-derived Map-Chennai 
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Figure 5.2 SDB compared with GEBCO-derived Map-Okha 
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Figure 5.3 SDB compared with GEBCO-derived Map-Kochi 
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The figures 5.1 for Chennai, figure 5.2 for Okha and figure 5.3 for Kochi above 

shows the SDB maps generated using MRF algorithm and also by GEBCO derived 

bathymetry. The SDB maps of the area are having much better resolution than 

GEBCO based maps. Besides the coarse resolution GEBCO database, further few 

commercial companies are providing SDB maps on demand for any particular area. It 

also provides various other services related to mapping water bodies and 

commercially on-the-shelf software solutions for the same. EOMAP is a company that 

provides satellite-derived bathymetry (EOMAP official web page, 2022). EOMAP 

also uses optical bathymetry (Landsat 8) methodology, has a 15-meter resolution with 

Negative meters unit, WGS-84 horizontal datum, and Chart datum (or LAT) as a 

vertical datum. However, the biggest drawback of EOMAP is the non-consideration 

of factors like Turbidity, water column corrections, etc. which this study has tried to 

overcome with an AI-based approach.   
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CHAPTER 6: CONCLUSION 

 

This research has contributed in several ways to the knowledge domain of SDB. 

The results and discussion chapters have already elaborated on the findings of this 

research. The results achieved from the research has proven few of the 

implications for the practical utilization of SDB for operational purpose. This 

study has achieved all four objectives mentioned in Chapter 1. The major 

contribution of this research to the existing body of SDB knowledge is as follows: 

1. Firstly, the study examined the contemporary, most cited SDB model with 

ML algorithm using single spectral band as well as multispectral satellite 

data. Other researchers also made a similar attempt but limited their work 

to comparison rather than further development of the model. In this 

research, each step was used as a feed-forward for further development of 

the model and errors were computationally used as an opportunity for 

further improvement of the model.  

2. This study proved the efficacy of machine learning algorithms when 

compared to other SDB models in the highly turbid & complex water of 

Vengurla. The question of univariate versus multivariate data use for 

processing was addressed along with dealing with outliers in the data by 

robust algorithms. The adequacy of the sample size was addressed by 

sample sensitivity analysis. Moreover, the best distribution of the training 

and testing dataset was also evaluated using three different splits of sample 

data. 

3. Then this study proved non-linear multivariate ML model like GPR 

performs better in such complex waters, but has a very high computation 

time. Wherein, models like RF & SVR perform slightly less accurately but 

have high computation speed. These results were validated in two different 

geographical areas of Vengurla & Mormugao using a single scene of the 

satellite image, which is very rare in SDB research to date. Further, the 

study has compared several ML algorithms for SDB derivation, and based 
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on higher efficiency, the less time-consuming and computationally 

extensive model was suggested.  

4.  This study was one of the pioneering efforts in examining the role of OAS 

on SDB derivation. This is the first time in SDB research where such vast 

longitudinal data was used for preliminary analysis of OAS on SDB. This 

unmatched opportunity was achieved because of the availability of the 

INCOIS SATCORE data collected from 2008 to 2016 and shared for the 

research to identify the moderating or mediating effect of OAS on SDB 

derivation. This data has been collected with the use of great amounts of 

effort and huge resources.  

5. This study was exploratory in nature and on preliminary examination of 

OAS by parametric analysis concluded only three parameters in the water 

column have an effect on SDB derivation and the same were used in 

further processing for the development of the SDB model. 

6. The four case studies have been conducted to develop and refine the 

algorithm at Okha, Kochi, Gopalpur & Chennai sites with vast 

geographical separation. But these sites almost represent variability in 

coastal region characteristics of India. The SDB derivation for such a vast 

region of 100 sq. Km to 1400 Sq. km is rare in SDB, which was achieved 

by this study. Besides, this study has applied SDB derivation up to a depth 

of 90 m with reasonable accuracy in the Gopalpur site.  

7. A generic Merged RF algorithm was developed as an SDB model and 

evaluated in all study sites. A generic Merged RF algorithm was suggested 

for recursive bathymetry mapping in the coastal region of India by testing 

and validating in different geographical locations.  

8. However, the most paramount contribution of this research is in achieving 

the SDB in highly turbid water by adding three parameters Chl, TSM & 

Turbidity derived from the same satellite imagery used for SDB. 

Previously, there were various efforts to correct turbidity's influence on 

SDB retrieval (Caballero & Stumpf, 2023). The different approaches have 

contributed significantly to cater for attenuation of EMR in the water 

column, but mostly without validating water column properties. INCOIS-
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SATCORE longitudinal data helped to overcome these challenges and 

provided a solution to remove the turbidity factor to improve bottom 

detection. 

9. Finally, this study has provided an algorithm to generate on-the-fly / real-

time recursive bathymetry using Python script. However, converting the 

same into a console where if one has a satellite image, he can derive SDB 

is a work in progress and will be continued in the future. 

 

The highlighted contribution of this study is notable, especially during this decade 

when most marine studies are advocating for the role of SDB in sustainable ocean 

observing systems, science & technology based ocean management systems,  

nourishing ocean health,  sustainability of the marine ecosystem, and many such other 

applications (Ryabinin et al., 2019). The last decade has shown a surge in Satellite 

Derived Bathymetry studies. A study worth mentioning in concluding the thesis is a 

systematic review of Ledar et al., (2023) which proved the last phase of SDB studies 

(2017-till date) has majorly focused on improving the accuracy of models to meet the 

IHO criterion of accuracy. This study has also concluded, irrespective of the 

substantial advancement of sensors and processing tools, SDB results still do not meet 

the IHO criterion for accuracy. However, the contribution of this research specially 

to achieve higher accuracy in highly turbid areas needs to be highlighted. 

The scope of SDB, its application areas, and further research to overcome 

challenges is very large, however, a few of the challenges or limitations and future 

research avenues are presented below. 

6.1 Future Research and Challenges 

The research provides several ways ahead for future research which include; 

examinations of OAS influence on the selection of satellite imagery for SDB, 

assigning weight to the pixels whose reflectance has been diminished instigated by 

OAS, and further development of a bio-physio-optical model for SDB by collecting 

bio-physical parameters data concurrent with satellite pass time. The few of the OAS 

like Chl are derived from HS data of ocean color sensors which have very coarse 

spatial resolutions unsuitable to meet requirement for coastal areas. Therefore, 

validation of such data is very essential prior further use in SDB research. Future 
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research may focus on utilizing Ocean Color products of various agencies for 

developing SDB algorithms. 

This study advocates incorporating satellite-derived OAS data into SDB 

retrieval to enhance the ability to retrieve bathymetry. The huge dataset of the study 

can also be used for creating a LUT database with a Python console for SDB 

derivation in the future. Achieving the IHO S-44 accuracy level by applying the above 

methodology may help overcome these limitations of accuracy to utilize SDB as an 

alternate to MBES and SBES in the near future. The influence of Chlorophyll, TSM, 

& Turbidity on SDB has been only studied very narrowly in this study limiting the 

scope of research. However, the application of this OAS data has a vast potential that 

will be immensely advantageous for future SDB studies. 

Ship-borne deployment of SBES, MBES, SONAR, AUVs, and ROVs for 

hydrographic surveying has grown widely used, providing an effective method to 

meet IHO criteria. For routine surveys, airborne LiDAR is highly costly and 

susceptible to environmental variables. Satellite-based approaches, particularly optical 

SDB, have reduced operational costs but may have resolution and accuracy 

limitations that must be evaluated in comparison with data from MBES and SBES. 

The methodological limitations in the current research include the time lag 

between in-situ & satellite data. Tidal movement's influence on the nearshore region 

may severely compromise the accuracy level, at study sites with high tide ranges. 

These limitations may be resolved with future space missions by obtaining 

synchronized datasets from all sources. Future studies may focus on these aspects to 

derive better solutions to the problem of accuracy. 
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Table 2: Descriptive Statistics
 16 Dec 2015 (Landsat-7), n=264 

n=264 Bathy B1_479 B2_561 B3_661 B4_835 
 

CHL DISS_OXY Salinity Temp TSM Turbidity Fdom Ammonium Nitrite Phosphate PH Silicate AOT500 Micro Nano Pico 
Mean 19.556 0.043 0.036 0.022 0.014 X 1.876 3.859 34.480 X 25.793 1.202 1.512 2.738 2.307 0.269 8.167 14.716 X 0.533 0.601 0.350 
SE 0.597 0.000 0.001 0.000 0.000 X 0.033 0.007 0.038 X 0.199 0.018 0.014 0.029 0.016 0.003 0.001 0.131 X 0.004 0.014 0.005 
Median 18.700 0.041 0.030 0.021 0.012 X 1.865 3.883 34.676 X 25.874 1.159 1.493 2.739 2.321 0.257 8.166 14.410 X 0.513 0.561 0.340 
SD 11.454 0.006 0.011 0.006 0.003 X 0.535 0.117 0.621 X 3.231 0.299 0.231 0.474 0.267 0.044 0.018 2.129 X 0.066 0.232 0.076 
Range 41.100 0.032 0.054 0.037 0.020 X 2.754 0.681 3.563 X 13.310 1.536 1.464 2.085 1.497 0.230 0.100 9.550 X 0.325 1.023 0.404 
Minimum 0.300 0.033 0.019 0.012 0.008 X 0.830 3.469 32.158 X 19.822 0.693 1.042 1.665 1.678 0.184 8.119 11.125 X 0.395 0.212 0.213 
Maximum 41.400 0.065 0.074 0.049 0.028 X 3.584 4.150 35.721 X 33.132 2.228 2.506 3.750 3.175 0.415 8.219 20.674 X 0.720 1.235 0.618 

13 Feb 2015 (Landsat-8), n=368 
n=368 Bathy B1_443 B2_483 B3_561 B4_655 B5_865 CHL DISS_OXY Salinity Temp TSM Turbidity Fdom Ammonium Nitrite Phosphate PH Silicate AOT500 Micro Nano Pico 
Mean 19.556 0.075 0.074 0.062 0.043 0.026 1.062 6.507 34.699 28.993 3.428 3.337 0.850 9.442 0.056 2.073 8.191 7.360 1.178 0.386 0.845 0.012 
SE 0.597 0.000 0.001 0.001 0.001 0.000 0.014 0.013 0.017 0.015 0.031 0.039 0.007 0.117 0.001 0.034 0.002 0.061 0.002 0.007 0.011 0.000 
Median 18.700 0.074 0.073 0.057 0.039 0.024 0.996 6.572 34.802 29.083 3.351 3.275 0.818 9.216 0.053 1.969 8.180 6.973 1.166 0.373 0.815 0.012 
SD 11.454 0.008 0.010 0.017 0.012 0.007 0.262 0.246 0.321 0.291 0.597 0.739 0.141 2.241 0.019 0.645 0.036 1.166 0.040 0.127 0.213 0.002 
Range 41.100 0.037 0.044 0.064 0.052 0.045 1.207 1.549 1.638 1.358 2.515 3.392 0.630 14.910 0.105 2.811 0.151 5.738 0.215 0.673 0.989 0.010 
Minimum 0.300 0.060 0.056 0.039 0.027 0.015 0.583 5.783 33.557 28.293 1.990 1.426 0.633 2.413 0.021 0.799 8.131 4.827 1.085 0.127 0.453 0.007 
Maximum 41.400 0.097 0.100 0.103 0.079 0.060 1.791 7.333 35.195 29.652 4.505 4.818 1.263 17.322 0.126 3.611 8.282 10.565 1.300 0.800 1.442 0.017 

02 Dec 2013 (Landsat-7), n=434 
n=434 Bathy B1_479 B2_561 B3_661 B4_835  CHL DISS_OXY Salinity Temp TSM Turbidity Fdom Ammonium Nitrite Phosphate PH Silicate AOT500 Micro Nano Pico 
Mean 17.719 0.049 0.049 0.032 0.019 X 2.357 X X 25.940 5.985 5.751 X 4.006 X X  8.052 X 0.875 1.185 0.128 
SE 0.555 0.000 0.001 0.000 0.000 X 0.040 X X 0.012 0.106 0.105 X 0.052 X X  0.078 X 0.012 0.012 0.004 
Median 14.700 0.049 0.048 0.029 0.020 X 2.046 X X 26.002 5.594 5.452 X 3.797 X X  8.088 X 0.787 1.157 0.094 
SD 11.572 0.006 0.012 0.008 0.003 X 0.824 X X 0.256 2.209 2.186 X 1.077 X X  1.615 X 0.245 0.245 0.091 
Range 41.100 0.026 0.045 0.040 0.016 X 4.658 X X 1.155 11.454 11.877 X 6.152 X X  8.276 X 1.316 1.850 0.397 
Minimum 0.300 0.036 0.032 0.021 0.016 X 0.782 X X 25.343 2.186 1.297 X 1.094 X X  4.337 X 0.490 0.343 0.031 
Maximum 41.400 0.062 0.077 0.061 0.032 X 5.440 X X 26.498 13.640 13.174 X 7.246 X X  12.613 X 1.806 2.193 0.428 

14 Feb 2012 (Landsat-7), n=435 
n=435 Bathy B1_479 B2_561 B3_661 B4_835  CHL DISS_OXY Salinity Temp TSM Turbidity Fdom Ammonium Nitrite Phosphate PH Silicate AOT500 Micro Nano Pico 
Mean 17.677 0.051 0.047 0.032 0.019 X 0.443 4.315 X X 12.219 X X X 0.537 X X 7.522 X X X X 
SE 0.556 0.000 0.001 0.000 0.000 X 0.005 0.010 X X 0.159 X X X 0.006 X X 0.087 X X X X 
Median 14.600 0.050 0.047 0.030 0.019 X 0.416 4.359 X X 11.341 X X X 0.494 X X 6.979 X X X X 
SD 11.591 0.006 0.013 0.009 0.004 X 0.102 0.202 X X 3.324 X X X 0.130 X X 1.818 X X X X 
Range 41.800 0.040 0.059 0.047 0.031 X 0.674 1.324 X X 22.712 X X X 0.813 X X 11.389 X X X X 
Minimum -0.400 0.039 0.026 0.017 0.011 X 0.117 3.369 X X 6.011 X X X 0.305 X X 3.566 X X X X 
Maximum 41.400 0.079 0.085 0.064 0.042 X 0.791 4.693 X X 28.723 X X X 1.119 X X 14.955 X X X X 

02 Nov 2011 (Landsat-7), n=433 
n=433 Bathy B1_479 B2_561 B3_661 B4_835  CHL DISS_OXY Salinity Temp TSM Turbidity Fdom Ammonium Nitrite Phosphate PH Silicate AOT500 Micro Nano Pico 
Mean 17.709 0.050 0.050 0.035 0.023 X 1.168 4.668 X X X 5.698 X X 0.616 0.843 8.403 1.327 X X X X 
SE 0.558 0.000 0.000 0.000 0.000 X 0.006 0.009 X X X 0.101 X X 0.006 0.013 0.002 0.031 X X X X 
SD 11.603 0.005 0.008 0.006 0.003 X 0.129 0.197 X X X 2.091 X X 0.135 0.269 0.045 0.650 X X X X 
Range 41.800 0.023 0.037 0.032 0.019 X 0.893 1.359 X X X 8.296 X X 0.765 2.133 0.274 4.268 X X X X 
Minimum -0.400 0.040 0.034 0.025 0.016 X 0.831 3.731 X X X 1.202 X X 0.217 0.122 8.284 0.597 X X X X 
Maximum 41.400 0.063 0.071 0.056 0.035 X 1.723 5.089 X X X 9.497 X X 0.983 2.255 8.558 4.866 X X X X 



  Bathy B1_479 B2_561 B3_661 B4_835 std_ 
chl 

std_DISS 
_OXY 

std_SALI 
NITY 

std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

Bathy 1.00                 
B1_479 -0.79 1.00                
B2_561 -0.86 0.88 1.00               
B3_661 -0.68 0.78 0.87 1.00              
B4_835 -0.49 0.60 0.67 0.72 1.00             
STD_CHL -0.35 0.15 0.24 0.16 0.04 1.00            
STD_DISS_OXY 0.19 -0.17 -0.23 -0.22 -0.19 -0.80 1.00           
STD_SALINITY 0.32 -0.12 -0.15 -0.03 0.03 -0.82 0.57 1.00          
STD_TSM 0.29 -0.08 -0.18 -0.15 -0.03 -0.96 0.77 0.76 1.00         
std_TURBIDITY 0.25 -0.32 -0.28 -0.20 -0.14 0.69 -0.76 -0.50 -0.74 1.00        
STD_Fdom 0.32 -0.05 -0.08 0.04 0.03 -0.78 0.61 0.80 0.77 -0.61 1.00       
STD_AMMONIUM 0.00 -0.15 -0.09 -0.04 -0.07 0.79 -0.74 -0.65 -0.87 0.90 -0.70 1.00      
STD_NITRITE 0.21 0.06 0.01 0.08 0.17 -0.79 0.46 0.66 0.84 -0.57 0.70 -0.67 1.00     
STD_PHOSPHATE -0.09 0.02 0.05 0.05 0.12 0.60 -0.76 -0.42 -0.55 0.62 -0.62 0.51 -0.33 1.00    
STD_SILICATE -0.04 -0.02 0.06 0.11 0.10 0.81 -0.89 -0.49 -0.81 0.88 -0.62 0.82 -0.53 0.80 1.00   
STD_NANO -0.07 0.00 0.10 0.14 0.09 0.87 -0.86 -0.58 -0.85 0.87 -0.61 0.83 -0.62 0.71 0.97 1.00  
STD_PICO -0.30 0.14 0.23 0.16 0.05 0.98 -0.82 -0.77 -0.93 0.71 -0.72 0.74 -0.77 0.60 0.82 0.89 1.00 

std_ 
chl

std_DISS 
_OXY

std_SALI 
NITY

std_ 
TSM

std_TURBI 
DITY

std_ 
Fdom

std_AM- 
MONIUM

std_NIT- 
RITE

std_PHOS 
PHATE

std_SILI 
CATE

std_ 
NANO

std_ 
PICO

-0.92

 02 Dec 2013 Bathy B1_479 B2_561 B3_661 B4_835 STD_CHL STD_TEMP STD_TSM STD_TUR- 
BIDITY 

STD_AMM- 
ONIUM 

STD_SILI- 
CATE 

STD_ 
NANO 

STD_ 
PIC0 

STD_ 
MICRO 

Bathy 1.000 
             

B1_479 -0.781 1.000 
            

B2_561 -0.909 0.873 1.000 
           

B3_661 -0.751 0.760 0.883 1.000 
          

B4_835 -0.339 0.388 0.454 0.661 1.000 
         

STD_CHL -0.018 -0.225 -0.107 -0.077 -0.009 1.000 
        

STD_TEMP 0.199 -0.050 -0.116 -0.078 0.005 -0.762 1.000 
       

STD_TSM 0.043 -0.017 0.056 0.184 0.269 -0.097 0.182 1.000 
      

STD_TURBIDITY 0.082 0.001 0.044 0.183 0.280 -0.229 0.293 0.974 1.000 
     

STD_AMMONIUM -0.363 0.209 0.291 0.294 0.225 -0.041 0.225 0.106 0.168 1.000 
    

STD_SILICATE -0.258 0.090 0.253 0.266 0.162 0.612 -0.508 -0.156 -0.270 -0.184 1.000 
   

STD_NANO 0.189 -0.269 -0.297 -0.261 -0.086 -0.167 0.439 0.255 0.312 0.547 -0.721 1.000 
  

STD_PIC0 -0.307 0.011 0.217 0.226 0.145 0.806 -0.692 0.136 0.002 0.164 0.724 -0.279 1.000 
 

STD_MICRO 0.041 -0.278 -0.171 -0.138 -0.054 0.960 -0.744 -0.251 -0.375 0.008 0.624 -0.188 0.777 1.000 

 14 Dec 2012 Bathy B1_479 B2_561 B3_661 B4_835 STD_CHL STD_DISS_OXY STD_TSM STD_NITRITE STD_SILICATE 
Bathy 1.000          
B1_479 -0.654 1.000         
B2_561 -0.901 0.849 1.000        
B3_661 -0.750 0.849 0.915 1.000       
B4_835 -0.532 0.805 0.724 0.817 1.000      
STD_CHL -0.495 0.434 0.557 0.519 0.324 1.000     
STD_DISS_OXY 0.569 -0.584 -0.662 -0.726 -0.572 -0.720 1.000    
STD_TSM -0.468 0.487 0.542 0.625 0.518 0.584 -0.910 1.000   
STD_NITRITE -0.553 0.487 0.590 0.613 0.509 0.451 -0.745 0.840 1.000  
STD_SILICATE -0.643 0.617 0.722 0.742 0.589 0.736 -0.863 0.762 0.847 1.000 

 02 NOV 2011 Bathy B1_479.tif B2_561.tif B3_661.tif B4_835.tif STD_CHL STD_DISS_OXY STD_TSM STD_NITRITE STD_PHOSPHATE STD_PH STD_SILICATE 
Bathy 1.000            
B1_479.tif -0.372 1.000           
B2_561.tif -0.603 0.499 1.000          
B3_661.tif -0.423 0.522 0.876 1.000         
B4_835.tif -0.242 0.379 0.641 0.753 1.000        
STD_CHL -0.150 0.295 0.160 0.261 0.365 1.000       
STD_DISS_OXY 0.489 -0.437 -0.377 -0.402 -0.361 -0.573 1.000      
STD_TSM -0.399 0.081 0.179 0.082 -0.110 -0.349 -0.396 1.000     
STD_NITRITE -0.560 0.258 0.326 0.206 0.014 0.056 -0.538 0.664 1.000    
STD_PHOSPHATE -0.187 0.358 0.205 0.277 0.295 0.751 -0.801 0.051 0.385 1.000   
STD_PH 0.080 -0.026 -0.115 -0.175 -0.229 -0.297 0.481 -0.023 0.201 -0.377 1.000  
STD_SILICATE -0.492 0.453 0.373 0.395 0.351 0.746 -0.898 0.288 0.551 0.807 -0.298 1.000 



16 Dec 2015 B1_479 B2_561 B3_661 B4_835 std_ 
chl 

std_DISS 
_OXY 

std_SALI 
NITY 

std_ 
TEMP 

std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

Linear .630 .738 .465 .241 .119 .035 .102 X .085 .063 .105 .000 .042 .008 .002 .005 .090 
Logarithmic .638 .778 .495 .231 .167 .001 .071 X .000 .001 .004 .016 .000 .072 .065 . .140 
Inverse .634 .787 .484 .200 .133 .001 .039 X .041 .042 .037 .033 .022 .102 .103 . .095 
Quadratic .644 .794 .508 .242 .208 .139 .131 X .225 .121 .270 .071 .210 .143 .182 .156 .183 
Cubic .646 .794 .513 .259 .222 .143 .167 X .261 .151 .357 .084 .214 .155 .182 .164 .187 
Compound .676 .845 .721 .435 .092 .050 .048 X .061 .048 .028 .000 .006 .012 .014 .026 .078 
Power .652 .810 .675 .378 .121 .003 .028 X .000 .001 .018 .014 .012 .061 .072 . .104 
S .619 .753 .593 .301 .088 .001 .016 X .037 .029 .034 .027 .031 .069 .073 . .062 
Growth .676 .845 .721 .435 .092 .050 .048 X .061 .048 .028 .000 .006 .012 .014 .026 .078 
Exponential .676 .845 .721 .435 .092 .050 .048 X .061 .048 .028 .000 .006 .012 .014 .026 .078 
Dependent variable is Bathy_Kochi 
Relationships are significant (less than 0.05) at 95 % Confidence Level 

13 May 2015 B1_443 B2_483 B3_561 B4_655 B5_865 std_ 
chl 

std_DISS 
_OXY 

std_SALI 
NITY 

std_ 
TEMP 

std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

Linear 0.70 0.82 0.85 0.74 0.66 0.19 0.13 0.38 0.03 0.04 0.08 0.36 0.09 0.20 0.28 0.48 0.11 0.35 
Logarithmic 0.69 0.81 0.86 0.76 0.70 x x x x x x x x x x x x x 
Inverse 0.68 0.80 0.84 0.76 0.69 x x x x x x x x x x x x x 
Quadratic 0.70 0.82 0.86 0.77 0.71 0.22 0.30 0.39 0.12 0.23 0.10 0.37 0.21 0.22 0.34 0.50 0.15 0.37 
Cubic 0.70 0.82 0.86 0.77 0.71 0.29 0.31 0.45 0.13 0.23 0.10 0.43 0.27 0.32 0.44 0.63 0.20 0.45 
Compound 0.66 0.75 0.84 0.83 0.79 0.17 0.21 0.57 0.03 0.05 0.06 0.46 0.10 0.23 0.27 0.59 0.07 0.45 
Power 0.64 0.72 0.80 0.80 0.75 x x x x x x x x x x x x x 
S 0.62 0.69 0.75 0.74 0.68 x x x x x x x x x x x x x 
Growth 0.66 0.75 0.84 0.83 0.79 0.17 0.21 0.57 0.03 0.05 0.06 0.46 0.10 0.23 0.27 0.59 0.07 0.45 
Exponential 0.66 0.75 0.84 0.83 0.79 0.17 0.21 0.57 0.03 0.05 0.06 0.46 0.10 0.23 0.27 0.59 0.07 0.45 
Dependent variable is Bathy_Kochi 
Relationships are significant (less than 0.05) at 95 % Confidence Level 

02 Dec 2013 B1_479 B2_561 B3_661 B4_835 std_ 
chl 

std_DISS 
_OXY 

std_SALI 
NITY 

std_ 
TEMP 

std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

Std_ 
Micro 

Linear .630 .826 .564 .115 .000 X X .040 .002 .007 X .132 X X .066 .036 .094 .002 
Logarithmic .638 .851 .609 .103 .053 X X .000 .029 .021 X .193 X X .128 .029 .096 .035 
Inverse .634 .858 .624 .090 .070 X X .004 .048 .039 X .094 X X .073 .061 .065 .069 
Quadratic .644 .859 .644 .124 .138 X X .194 .116 .155 X .391 X X .269 .291 .095 .131 
Cubic .646 .859 .646 .123 .169 X X .202 .123 .155 X .443 X X .301 .332 .132 .179 
Compound .676 .781 .758 .343 .002 X X .025 .023 .016 X .155 X X .108 .043 .127 .001 
Power .652 .748 .742 .302 .049 X X .003 .056 .048 X .151 X X .115 .015 .099 .033 
S .619 .707 .696 .259 .049 X X .007 .037 .035 X .059 X X .052 .039 .045 .048 
Growth .676 .781 .758 .343 .002 X X .025 .023 .016 X .155 X X .108 .043 .127 .001 
Exponential .676 .781 .758 .343 .002 X X .025 .023 .016 X .155 X X .108 .043 .127 .001 
Dependent variable is Bathy_Kochi  
Relationships are significant (less than 0.05) at 95 % Confidence Level  

14 Dec 2012 B1_479 B2_561 B3_661 B4_835 std_ 
chl 

std_DISS 
_OXY 

std_SALI 
NITY 

std_ 
TEMP 

std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

Std_ 
Micro 

Linear .427 .811 .562 .283 .245 .323 X X .219 X X .132 .306 X .413 X X X 
Logarithmic .444 .848 .629 .310 .118 .154 X X .071 X X .193 .127 X .202 X X X 
Inverse .454 .848 .663 .321 .014 .025 X X .000 X X .094 .001 X .020 X X X 
Quadratic .461 .863 .669 .319 .250 .326 X X .224 X X .391 .309 X .414 X X X 
Cubic .461 .865 .675 .321 .314 .402 X X .349 X X .443 .450 X .495 X X X 
Compound .477 .778 .702 .440 .252 .549 X X .458 X X .155 .528 X .596 X X X 
Power .473 .744 .700 .435 .124 .334 X X .196 X X .151 .258 X .260 X X X 
S .463 .685 .662 .406 .016 .086 X X .009 X X .059 .017 X .027 X X X 
Growth .477 .778 .702 .440 .252 .549 X X .458 X X .155 .528 X .596 X X X 
Exponential .477 .778 .702 .440 .252 .549 X X .458 X X .155 .528 X .596 X X X 
Dependent variable is Bathy_Kochi  
Relationships are significant (less than 0.05) at 95 % Confidence Level  

02 NOV 
2011 

B1_479 B2_561 B3_661 B4_835 std_ 
chl 

std_DISS 
_OXY 

std_SALI 
NITY 

std_ 
TEMP 

std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

Std_ 
Micro 

Linear .138 .363 .179 .058 .022 .239 X X .159 X X X .314 .035 .242 X X X 
Logarithmic .130 .395 .190 .055 .001 .077 X X .177 X X X .254 .000 .173 X X X 
Inverse .121 .418 .197 .051 .000 .005 X X .072 X X X .112 .001 .007 X X X 
Quadratic .174 .442 .196 .062 .085 .265 X X .215 X X X .383 .112 .300 X X X 
Cubic .173 .442 .196 .061 .119 .286 X X .235 X X X .384 .215 .310 X X X 
Compound       X X  X X X   . X X X 
Power       X X  X X X    X X X 
S                   
Growth                   
Exponential                   
Dependent variable is Bathy_Kochi  
Relationships are significant (less than 0.05) at 95 % Confidence Level  



16 Dec 2015 (Landsat-7) 
Vars R-Sq R-Sq 

(adj) 
R-Sq 

(pred) 
Mallows Cp S B1_479 B2_561 B3_661 B4_835 std_ 

chl 
std_DISS 

_OXY 
std_SALI 

NITY 
std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

1 73.8 73.7 73.4 678.8 5.9408 
 

X 
              

3 85.1 84.9 84.5 280.2 4.5052 
 

X 
   

X 
   

X 
      

4 87.3 87.1 86.8 202.3 4.1636 
 

X 
      

X X 
 

X 
    

4 87.2 87.0 86.6 204.7 4.1744 
 

X 
      

X X X 
     

6 88.4 88.1 87.7 165.9 3.9898 
 

X 
    

X 
 

X X X 
    

X 
6 88.4 88.1 87.8 166.8 3.9943 

 
X 

  
X 

   
X X X 

    
X 

7 89.7 89.4 89.0 121.2 3.7662 
 

X 
  

X 
 

X 
 

X X X 
    

X 
7 89.6 89.3 89.0 124.4 3.7822 

 
X 

    
X X X X X 

    
X 

8 91.1 90.8 90.4 74.1 3.5130 
 

X 
  

X 
 

X X X X X 
    

X 
9 91.7 91.4 91.0 54.7 3.3999 

 
X 

  
X 

 
X X X X X 

   
X X 

10 92.4 92.1 91.7 31.9 3.2615 
 

X 
  

X 
 

X X X X X X 
 

X 
 

X 
10 92.3 92.0 91.6 34.8 3.2789 

 
X 

  
X 

 
X X X X X X X 

  
X 

11 92.7 92.4 92.0 23.3 3.2040 X X 
  

X 
 

X X X X X X 
 

X 
 

X 
11 92.7 92.3 91.9 24.2 3.2091 

 
X 

  
X 

 
X X X X X X X 

 
X X 

12 93.0 92.6 92.2 14.4 3.1430 X X 
  

X 
 

X X X X X X X 
 

X X 
13 93.0 92.7 92.2 14.1 3.1346 X X 

 
X X 

 
X X X X X X X 

 
X X 

13 Feb 2015 (Landsat-8) 
Vars R-Sq R-Sq 

(adj) 
R-Sq 

(pred) 
Mallows Cp S B1_479 B2_561 B3_661 B4_835 std_ 

chl 
std_DISS 

_OXY 
std_SALI 

NITY 
std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

1 84.9 84.8 84.7 889.3 4.5   X              
1 82.1 82.1 82.0 1113.7 4.8  X               
2 93.4 93.4 93.3 183.1 2.9 X X               
2 94.5 94.4 94.3 99.7 2.7 X X               
3 93.9 93.9 93.8 141.5 2.8 X X       X        
3 94.6 94.6 94.4 88.4 2.7 X X           X    
5 94.9 94.8 94.7 70.5 2.6 X X           X  X  
5 95.0 94.9 94.8 62.9 2.6 X X  X X        X    
5 95.1 95.0 94.8 55.4 2.6 X X    X       X    
6 95.1 95.0 94.9 55.9 2.6 X X  X X        X    
6 95.2 95.1 95.0 47.4 2.5 X X X X X   X     X    
6 95.2 95.1 94.9 47.5 2.5 X X  X X        X    
6 95.4 95.3 95.1 33.6 2.5 X X X X      X      X 
7 95.3 95.2 95.1 37.4 2.5 X X X X X  X   X       
7 95.5 95.4 95.2 27.4 2.5 X X X X X    X    X    
8 95.7 95.5 95.4 15.5 2.4 X X X X X X X   X       
8 95.6 95.5 95.3 16.9 2.4 X X X X X  X  X X       

11 95.8 95.6 95.4 13.5 2.4 X X X X X X  X  X  X X  X  
12 95.8 95.6 95.3 13.3 2.4 X X X X X X  X X X  X X  X  

02 Dec 2013 (Landsat-7) 
Vars R-Sq R-Sq 

(adj) 
R-Sq 

(pred) 
Mallows Cp S B1_479 B2_561 B3_661 B4_835 std_ 

chl 
std_DISS 

_OXY 
std_SALI 

NITY 
std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

1 82.6 82.6 82.5 509.3 4.8086    X                                 
1 61.0 60.9 60.7 1680.7 7.2103 X                                    
1 84.1 84.1 83.9 431.3 4.6042    X                                 
2 85.9 85.8 85.7 335.6 4.3395    X               X                
2 85.7 85.6 85.4 350.3 4.3811    X       X                        
3 88.1 88.0 87.8 217.9 3.9880    X               X  X            
3 88.0 87.9 87.6 227.7 4.0183    X       X                     X 
4 89.0 88.9 88.7 172.3 3.8415    X            X X  X            
4 88.7 88.5 88.3 192.2 3.9056    X X            X  X            
5 90.1 89.9 89.4 117.7 3.6580    X       X   X                X 
5 89.8 89.7 89.4 132.7 3.7089    X            X X  X            
5 91.2 91.0 90.3 61.3 3.4573    X       X   X             X X 
8 92.2 92.0 91.4 11.3 3.2603    X X    X   X X       X X X 

14 Feb 2012 (Landsat-7) 
Vars R-Sq R-Sq 

(adj) 
R-Sq 

(pred) 
Mallows Cp S B1_479 B2_561 B3_661 B4_835 std_ 

chl 
std_DISS 

_OXY 
std_SALI 

NITY 
std_ 
TSM 

std_TURBI 
DITY 

std_ 
Fdom 

std_AM- 
MONIUM 

std_NIT- 
RITE 

std_PHOS 
PHATE 

std_SILI 
CATE 

std_ 
NANO 

std_ 
PICO 

1 81.1 81.1 80.9 208.0 5.0359  X               
2 85.6 85.5 85.3 60.3 4.4094 X X               
2 84.5 84.4 84.2 97.4 4.5741  X X              
3 87.0 86.9 86.7 15.1 4.1956 X X X              
3 86.2 86.1 85.9 42.7 4.3248 X X  X             
4 87.2 87.1 86.9 8.5 4.1592 X X X     X         
4 87.1 87.0 86.8 12.6 4.1787 X X X           X   
5 87.3 87.2 86.9 7.7 4.1505 X X X  X   X         
5 87.3 87.2 86.9 7.9 4.1514 X X X X    X         
6 87.4 87.2 87.0 5.9 4.1371 X X X X X   X         

02 Nov 2011 (Landsat-7) 
1 36.3 36.2 35.7 342.4 9.2408    X              X             
2 45.1 44.8 44.3 238.7 8.5927    X                             
3 53.5 53.2 52.5 139.2 7.9176    X X           X    X       
7 64.5 63.9 63.1 14.4 6.9520    X X    X X  X    X X    
8 64.9 64.2 63.3 11.2 6.9182 X X X    X X  X    X X    
8 64.8 64.2 63.2 12.2 6.9263    X X X X X  X    X X    
9 65.2 64.4 63.3 9.7 6.8981 X X X X X X      X X    

Total Occurrences 31 63 23 17 31 9 14 24 24 20 18 14  19 4 19 



16022015 (DF-16) 
 Landsat-7 

13022015 (DF-16)  
Landsat-8 

13022015 (DF-11) 
 Landsat-7 

14022012 (DF-9) 
Landsat-7 

02112011 (DF-11) 
Landsat-7 

 
F-
Value 

P-
Value 

 F-
Value 

P-
Value 

 
F-Value P-

Value 
F-Value P-Value F-Value P-Value 

Regression  208.50 0.000 Regression 377.23 0.000 Regression 248.678 .000 328.28 0.000 71.78 0.000 

  B1_479 9.61 0.002   B1_443 259.93 0.000 B1_479 1.702 .193 52.78 0.000 3.39 0.066 

  B2_561 13.59 0.000   B2_483 166.47 0.000 B2_561 156.712 .000 747.34 0.000 106.14 0.000 

  B3_661 0.68 0.412   B3_561 23.49 0.000 B3_661 2.051 .153 33.09 0.000 20.86 0.000 

  B4_835 2.08 0.150   B4_655 33.89 0.000 B4_835 .122 .728 4.44 0.036 3.45 0.064 

  STD_CHL 39.11 0.000   STD_CHL 8.53 0.004 STD_CHL 47.012 .000 4.91 0.027 3.37 0.067 

  STD_DISS_OXY 1.35 0.246   STD_DISS_OXY 3.90 0.049   STD_DISS_OXY X X 0.12 0.731 14.05 0.000 

  STD_Salinity 54.93 0.000   STD_Salinity 1.66 0.199   STD_Salinity X X X X X X 

  STD_TSM 87.64 0.000   STD_TSM 0.853 0.03   STD_TSM 71.078 .000 0.72 0.397 1.18 0.279 

  STD_Turbidity 154.96 0.000   STD_Turbidity 0.80 0.037   STD_Turbidity 126.751 .000 X X X X 

  STD_Fdom 147.88 0.000   STD_Fdom 4.93 0.027   STD_Fdom X X X X X X 

  Std_Ammonium 162.79 0.000   Std_Ammonium 4.13 0.043   Std_Ammonium 69.620 .000 X X X X 

  STD_Nitrite 23.45 0.000   STD_Nitrite 1.22 0.270   STD_Nitrite X X 0.02 0.891 44.56 0.000 

  STD_Phosphate 8.99 0.003   STD_Phosphate 3.65 0.057   STD_Phosphate X X X X 96.45 0.000 

  STD_Silicate 2.34 0.128   STD_Silicate 0.01 0.943   STD_Silicate 32.346 .000 0.92 0.337 1.47 0.226 

  STD_Nano 10.30 0.002   STD_Nano 4.66 0.032   STD_Nano 28.777 .000 X X X X 

  STD_Pico 91.03 0.000   STD_Pico 1.16 0.283   STD_Pico 2.040 .154 X X X X 

R-Square 0.931 R-Square 0.958 R-Square .923 R-Square  0.874 R-Square    0.653 

SE 3.13 SE 2.41 SE 3.25 SE   4.14 SE    6.1 

Dependent variable is Bathy_Kochi 

Relationships are significant if less than 0.05 at 95 % Confidence Level 
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