

 “INTELLIGENT CONTROL AND OPTIMIZATION OF NONLINEAR

SYSTEMS”

A Thesis submitted to the

UPES

For the Award of

Doctor of Philosophy

In

Engineering

By

Devendra Rawat

Jan.2023

SUPERVISOR(s)

 Dr. Mukul Kumar Gupta

 Dr. Abhinav Sharma

Department of Electrical & Electronics Engineering

School of Engineering (SOE)

UPES

Dehradun- 248007: Uttarakhand

“INTELLIGENT CONTROL AND OPTIMIZATION OF NONLINEAR

SYSTEMS”

A Thesis submitted to the

UPES

For the Award of

Doctor of Philosophy

In

Engineering

By

Devendra Rawat

(SAP ID 500049754)

Jan.2023

SUPERVISOR(s)

Dr. Mukul Kumar Gupta

Associate Professor

Department of Electronics and Instrumentation

MJP Rohilkhand University Uttar Pradesh

Formally Assistant Professor (SG)

UPES

Dr. Abhinav Sharma

Assistant Professor(SG)

Department of Electrical & Electronics Engineering

UPES

Department of Electrical & Electronics Engineering

School of Engineering (SOE)

UPES

Dehradun- 248007: Uttarakhand

i

DECLARATION

I declare that the thesis entitled “Intelligent control and optimization of nonlinear

systems” has been prepared by me under the guidance of Dr. Mukul Kumar Gupta

Assistant Professor (SG), and Dr. Abhinav Sharma Assistant Professor (SG),

Department of Electrical and Electronics Engineering, UPES, Dehradun. No part

of this thesis has formed the basis for the award of any degree or fellowship

previously.

Devendra Rawat

School of Engineering [SOE],

UPES

Dehradun-248007, Uttarakhand

ii

CERTIFICATE

iii

ABSTRACT

Almost every physical system is nonlinear in nature. These systems are inherently

uncertain, unstable, and complex. Nonlinear systems are always challenging to

control because of the properties like No superposition and homogeneity, Chaotic

behavior, Multiple equilibrium states, and Input sensitivity. Several methods are

employed for analyzing and controlling such types of systems. Control of these

systems is always a fascinating area for researchers. Robotic manipulators are an

example of such a system that has highly nonlinear, uncertain, and unstable

dynamics.

With technological advancement, robotic manipulators have gained much

popularity in industrial as well as medical applications. These applications include

pick and place, material handling, assembling, welding, teleoperations, haptic

interfaces, prosthetic limbs, and many more. Taking into consideration the non-

linear characteristics and complexity of robotic manipulators, effective and

optimized control is essentially required. Because of these non-linear

characteristics, it is difficult to approximate the systems aimed to enhance

efficiency. Conventional approaches like optimal control, a nonlinear sliding mode

control (SMC), robust and adaptive control, the three-term proportional-integral-

derivative (PID), and fractional order PID (FOPID) are popular control methods

but need the exact modeling of the system. Intelligent control methods imbibe

artificial intelligence methods in conventional control methods to increase their

performance and effectiveness.

The trajectory tracking of a robotic manipulator has been presented in this work

using numerous methods. First, a robust adaptive sliding mode control then PID

and FOPID-based controllers have been implemented to track the reference

trajectory. Furthermore, four different metaheuristic algorithms namely grey wolf

optimization algorithm (GWO), whale optimization algorithm (WOA), moth flame

optimization (MFO), and multiverse optimization (MVO) have been implemented

iv

for the trajectory control of a two-link linearized robotic manipulator. Afterward,

the trajectory tracking has been achieved using other four recent metaheuristic

algorithms namely the arithmetic optimization algorithm (AOA), atom search

optimization (ASO), spotted hyena optimizer (SHO), and sooty tern optimization

(STO). These optimization techniques have considered the weighted sum of IAE

and ITAE as a performance index having the error between the reference and actual

trajectory as the fitness value.

All these metaheuristic algorithms are stochastic in nature; therefore, a statistical

analysis has been performed by running each algorithm 10 times. In order to access

their performance a parametric statistical Friedman’s ANOVA test has been

performed and a Friedman ranking has been assigned to each of the algorithms. For

the linearized model, the MFO outperforms the others while for the nonlinear

model, the STO outperforms the other algorithms. MFO and STO attain the first

rank in this test for linear and nonlinear models respectively.

Further, a novel metaheuristics algorithm hybrid of the particle swarm optimization

(PSO) and sooty tern optimization (STOPSO) has been proposed for the

optimization of the controllers for trajectory tracking of the robotic manipulators.

The inclusion of the PSO's exploitation capability with adjustable weight in

sequential mode enhances the STO's exploitation capability greatly in the

proposed STOPSO algorithm. As a result, the proposed algorithm is converging

equally well to the true values with minimum error. The proposed STOPSO

performs better in comparison to STO and other implemented algorithms. In

addition to this, the performance of the proposed STOPSO algorithm is measured

based on convergence analysis, robustness, reliability, and statistical analysis for

trajectory control and compared with the previous algorithms existing in the

literature. In trajectory control of robotic manipulators, some applications require

tracking of the optimum point in the defined trajectory, for such applications an

extremum-seeking control has been designed. The perturbation type extremum

seeking control attains the optimum value of the trajectory with the help of designed

control laws.

v

ACKNOWLEDGEMENT

Foremost, I would first like to thank my Ph.D. supervisors, Dr. Mukul Kumar

Gupta, and Dr. Abhinav Sharma, from UPES Dehradun. Their patience, motivation,

enthusiasm, and immense knowledge have constantly encouraged me during my

Ph.D. study. They constantly provided me with guidance along the way about my

paper writing and presentation abilities, which helped me gain confidence and

become an accomplished researcher. Without their immense support, I could never

consummate my Ph.D. study. The wisdom and accomplishments they imparted to

me have shaped who I am today and will continue to do so in the future.

I am thankful to Dean SoE, Dean R&D, HoD Electrical Cluster, Research

coordinator SoE, and all my supervisory team for providing consistent motivation

to put their best efforts into this work.

The blessings of my parents and the love of my family are my biggest support

during every stage of my life. My heartfelt gratitude to my wife Ujjwala and

children Yug and Shatakshi without their motivation and kindness, I could never

have finished my degree.

I am extremely grateful to all of my amazing colleagues for their constant

encouragement and support. Finally, I want to express my gratitude to the almighty

God for guiding me through all of the challenges I have experienced in my journey.

I am thankful to the almighty for being my mentor day by day.

vi

TABLE OF CONTENTS

Declaration i

Certificate ii

Abstract iii

Acknowledgment v

Contents vi

List of Figures ix

List of Tables xi

List of Abbreviations xii

List of Symbols xiii

1. Introduction 1

1.1 Introduction to nonlinear systems……………………………........1

1.2 Control of Nonlinear systems…………………………………. ….2

1.3 Robotic Manipulators…………………………………………...…3

1.4 Motivation of the work…………………………………………….4

1.5 Objectives…………………………………………………………4

1.6 Thesis Organization……………………………………………….5

1.6.1 Chapter 2: Literature Review……………………...5

1.6.2 Chapter 3: Analysis of control strategies for robotic

manipulator…………………………………...…...5

1.6.3 Chapter 4: Optimization and statistical analysis of

control techniques for linearized model……………5

1.6.4 Chapter 5: Optimization and statistical analysis of

control techniques for nonlinear model……………5

1.6.5 Chapter 6: Conclusion and Future Work………......6

vii

2. Literature Review 7

2.1 Introduction………………………………………………………..7

2.2 Intelligent Control Methods……………………………………….8

2.2.1 Artificial Neural Networks………………………...9

2.2.2 Fuzzy Logic Control……………………………...12

2.2.3 Expert Control Systems.…….……………………16

2.2.4 Machine Learning Control……………………….19

2.2.5 Optimization Algorithms………………………...21

2.3 Comparison of intelligent control methods……………………….26

3. Analysis of control strategies for robotic manipulators 29

3.1 Introduction………………………………………………………29

3.2 Dynamics of a two-link Robotic Manipulator……………………29

3.3 PID and FOPID Control………………………………………….34

3.4 Robust Adaptive Sliding Mode Control…………………………. 37

3.5 Stability Analysis………………………………………………...41

3.6 Extremum Seeking Control………………………………………43

3.6.1 Design of ESC for robotic manipulator…………………..45

4. Optimization and statistical analysis of control techniques for

linearized model 49

4.1 Introduction………………………………………………………49

4.2 Grey Wolf Optimization (GWO)…………………………………50

4.3 Whale Optimization Algorithm (WOA)………………………….52

4.4 Moth Flame Optimization (MFO).……………………………….55

4.5 Multi-Verse Optimization (MVO)……………………………….58

4.6 Results and Discussions………………………………………….60

5. Optimization and statistical analysis of control techniques for

nonlinear model 70

5.1 Introduction………………………………………………………70

5.2 Arithmetic Optimization Algorithm (AOA)...……………………71

viii

5.3 Atom Search optimization (ASO)…………………………..........74

5.4 Spotted Hyena Optimizer (SHO)…………………………………76

5.5 Sooty Tern Optimization (STO)………………………………….78

5.6 Novel Hybrid STOPSO Algorithm………………………………81

5.6.1 Novelty of Work………………………………….81

5.6.2 Hybrid STOPSO Algorithm……………………...81

5.7 Results and Discussion…………………………………………...84

6. Conclusion and Future Scope of the Work 94

6.1 Conclusion……………………………………………………….94

6.2 Future Scope…………………………………………………..….96

Bibliography 97

Plagiarism Report 111

Curriculum Vitae 113

ix

List of Figures

2.1 Intelligent Control Methods…………………………………………………...8

2.2 Architecture of artificial neural networks……………………………............10

2.3 Architecture of ANN-based control methods…………………………….......10

2.4 Fuzzy Logic-based control approach………………………………………...13

2.5 Architecture of MLC………………………………………………………....19

2.6. Generalized implementation of an optimization technique in control………21

3.1 A two-link robotic manipulator……………………………………………....30

3.2 Flow diagram of mathematical modeling………………………………….....33

3.3 Simulink diagram of the mathematical model……………………………….33

3.4 Block diagram of PID controller design…………………………………. ….35

3.5 Block diagram of FOPID and PID controller design……….…………….….35

3.6 Block Diagram of the adaptive SMC controller………………………………37

3.7 Error of link 1…………………………………………………………………40

3.8 Error of link 2…………………………………………………………………40

3.9 Tracking error of first joint using ASMC…………………………………….41

3.10 Tracking error of second joint using ASMC………………………………...42

3.11 Block diagram of ESC……………………….……………………………...43

3.12 Classification of ESC Techniques……………………….………………….44

3.13 Polynomial Reference trajectory………………………………………...….45

3.14 Output of ESC………………………………………………….….…....….46

3.15 Optimum value tracking of the reference trajectory…………………………46

3.16 Optimum value tracking of the reference trajectory……………………. ….47

3.17 SIMULINK model of ESC for trajectory control of robotic manipulator.….47

4.1 Description of GWO algorithm……………………………………………...51

4.2 Flow diagram of GWO algorithm……………………………………………52

4.3 Description of WOA………………………………….…………………. ….54

4.4 Flow diagram of WOA………………………...…………………………….54

4.5 Description of MFO algorithm………………………………………………55

x

4.6 Flow diagram of MFO algorithm………………………................................58

4.7 Flow chart of MVO algorithm…………………………………………….….60

4.8 Friedman’s Ranking for PID controller………………………………………64

4.9 Friedman’s Ranking for FOPID Controller….……………………………….65

4.10 Convergence curve of the algorithms for PID controller…………………….66

4.11 Convergence curve of the algorithms for FOPID controller……………..…66

4.12 GWO tuned PID and FOPID controller response…………………………..67

4.13 WOA tuned PID and FOPID controller response…………………………..68

4.14 MFO tuned PID and FOPID controller response……………………………69

4.15 MVO tuned PID and FOPID controller response……………………………69

5.1 Flow chart of AOA…………………………………………………………...71

5.2. Flow chart of ASO…………………………….…………………………….74

5.3. Flow chart of SHO……………………………………………………….….77

5.4. Flow chart of STO………………………….…………………………….….79

5.5 Flow chart of proposed hybrid STOPSO algorithm.………………………….84

5.6. Polynomial Reference trajectory…………………………………………….85

5.7 Reference trajectory generation in SIMULINK………………………………85

5.8 Friedman’s ranking of the metaheuristic algorithms on PID controller………89

5.9 Trajectory tracking using ASO tuned PID……………………………………89

5.10 Trajectory tracking using AOA tuned PID………………………………....90

5.11 Trajectory tracking using SHO tuned PID……………………………….....90

5.12 Trajectory tracking using STO tuned PID………………………………......91

5.13 Trajectory tracking using hybrid STOPSO tuned PID………………………92

5.14 Convergence curve of all the metaheuristic algorithms……………………..92

xi

List of Tables

2.1 Development model of an expert control system.…………………………….17

2.2 Applications of metaheuristic algorithms in robotic manipulators…………...22

2.3 Key features of intelligent control techniques.……………………………….27

4.1 Parameters for metaheuristic algorithms.…………………………………….61

4.2. PID Controller gains, error values, and objective function values for various

algorithms……………………………………………………………………......62

4.3 Statistical parameters for PID Controller…………………………………….62

4.4 FOPID Controller gains, error values, and objective function values for various

algorithms.……………………………………………………………………….63

4.5 Statistical parameters for FOPID Controller…………………………………63

4.6 Ranking of the metaheuristic algorithms on PID and FOPID controller designed

according to the Friedman test.…………………………………….…………….64

5.1 Values of the Parameters considered for simulation………………………….86

5.2 Controller gains and objective function values for metaheuristic algorithms...86

5.3 Statistical Analysis of the fitness function in 10 runs………………………...87

5.4 Ranking of the metaheuristic algorithms on PID controller designed according

to the Friedman’s Test……………………………………………………………88

5.5 Comparative study of the proposed algorithm………………………………..93

xii

List of Abbreviations

A

ABC Artificial bee colony ACO Ant colony optimization

AOA Arithmetic optimization Algorithm ASO Atom search optimization

ASMC Adaptive sliding mode control AI Artificial Intelligence

ANN Artificial neural networks

C

CS Crow search algorithm CSA Cuckoo search algorithm

CSO Chicken swarm optimization

D

DoF Degree of freedom

E

ESC Extremum seeking control

F

FOPID Fractional order proportional integral derivative

FLC Fuzzy logic controller FFA Firefly algorithm

G

GA Genetic algorithm GWO Grey wolf optimization

I

ILC Iterative learning control IAE Integral absolute error

ITAE Integral time absolute error IACCO Integral absolute change in

controller output ITSE Integral time SQUARE error

xiii

L

LSA Least square algorithm

M

MFO Moth flame optimization MVO Metaverse optimization

MIMO Multi input multi output MLC Machine learning control

N

ND Negative definite NSD Negative semidefinite

P

PD Proportional derivative PID Proportional integral derivative

PSO Particle swarm optimization PSD Positive semidefinite

R

RNN Recurrent neural networks

RBFNN Radial Basis function neural networks

S

SHO Spotted hyena optimization STO Sooty tern optimization

SMC Sliding mode control SVM Support vector machine

T

TDR Travelling distance rate

W

WOA Whale optimization algorithm

WEP Wormhole existence probability

xiv

List of Symbols

𝜽𝟏 Angular position of link 1 𝜽𝟐 Angular position of link 2

L Lagrangian function K Kinetic energy

U Potential energy X Displacement

F Force T Torque

M1 Mass of link 1 M2 Mass of link 2

l1 Length of link 1 l2 Length of link 2

M Mass matrix C Coriolis term

 G Gravitational term 𝑪𝟏 Cosine of Angular position of link 1

 𝑪𝟐 Cosine of Angular position of link 2

 𝑺𝟐 Sin of angular position of link 2

 𝑺𝟏𝟐 Sin of sum of angular positions of link 1 and link2

�̈�𝟏 Angular accelerations of the links. 𝜽�̇� Centripetal acceleration

�̇�𝟏�̇�𝟐 Coriolis acceleration. Y(t) Output of PID Controller

𝑲𝑷 Proportional gain 𝑲𝑰 Integral gain

𝑲𝑫 Derivative gain 𝑮(𝒔) Transfer function

 𝒇 Fitness function t time

𝒘𝟏 Weight assigned to fitness function 𝒖 The control low

𝒘𝟐 Weight assigned to fitness function a, b The odd integers

S Sliding surface K A constant > 0

𝒖𝒍𝒇 Low frequency controller term 𝒖𝒉𝒇 High frequency controller term

𝒅𝒊(𝒕) Disturbances e(t) Error

𝜼𝒊(𝒕)

V Lyapunov function

𝜞 A positive diagonal matrix �̇�(𝒓) Derivative of lyapunov function

𝑱𝟏 Objective function of ESC 𝑱𝟐 Objective function of ESC

𝒖 Control input in ESC 𝑪 Constant in ESC

1

Chapter 1

Introduction

1.1 Introduction to nonlinear systems

Nonlinear systems are systems that do not have a proportional relationship

between the inputs and outputs, and thus cannot be described by linear

equations. Nonlinear systems have specific properties like no superposition and

homogeneity, chaotic behavior, multiple equilibrium states, input sensitivity,

state dependence, and multivariable interactions that distinguish them from

linear systems and impact the design and implementation of control algorithms.

Nonlinear systems have unpredictable dynamics that make it difficult to achieve

the desired performance.

Nonlinear control systems can exhibit local stability; the system may be stable

for some initial conditions but unstable for others. The challenging nature of the

nonlinear dynamical systems makes designing and implementing control

algorithms for nonlinear control systems complex. Therefore, specialized

techniques and algorithms are often required to achieve the desired

performance. Researchers have implemented various control techniques such as

optimal, adaptive, robust, sliding mode, model predictive control (MPC), and

other nonlinear control techniques.

A nonlinear system is expressed in the standard form as follows.

 �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 𝑦 = ℎ(𝑥) (1.1)

 𝑓, 𝑔, ℎ are nonlinear functions.

Another representation of the nonlinear system is expressed in eq (1.2)

 �̇� = 𝑓(𝑥, 𝑢) 𝑦 = ℎ(𝑥) (1.2)

where 𝑥 is the state vector, 𝑢 is the input vector, and 𝑓 is the nonlinear function

describing the relationship between the state and input vectors. 𝑦 is the output

vector and ℎ is a nonlinear function that relates the state and output vectors.

These nonlinear functions are highly complex and difficult to analyze thus, the

development and analysis of nonlinear control systems require advanced

2

mathematical skills and a deep understanding of control theory. The aim of

nonlinear control is to make the system stable and maintain the desired

behaviour in the presence of nonlinearities. Applications of nonlinear control

can be found in various fields such as robotics, aerospace, electrical power

systems, and chemical process control. One such robotic system, a two-link

robotic manipulator has been considered for trajectory tracking problem in this

thesis.

1.2 Control of nonlinear systems

Nonlinear systems are very difficult to control and almost every physical system

is nonlinear in nature. These systems are inherently uncertain, unstable, and

complex. The properties like no superposition and homogeneity, Chaotic

behavior, Multiple equilibrium states, and Input sensitivity makes nonlinear

systems challenging to control [1]. Several methods have been employed by the

researchers for the analysis and control of such type of systems. Control of these

systems is always an area of interest for researchers. Researchers have been

developing new methods for controlling such nonlinear systems. The advent

and popularity of artificial intelligence has provided a great amount of

autonomy and innovations in the control of nonlinear systems.

Robotic manipulators are an example of such a system that has highly nonlinear,

uncertain, and unstable dynamics [2]. With technological advancement, robotic

manipulators have gained much popularity in industrial as well as medical

applications. These applications are pick and place, material handling,

assembling, welding, teleoperations, haptic interfaces, prosthetic limbs, and

many more. Taking into consideration the non-linear characteristics and

complexity of robotic manipulators, effective and optimized control is

essentially required. Various methods like PID [3], sliding mode control [3],

FOPID [4-5], and robust adaptive control [6-7] have been implemented to solve

the problems of robotic systems. The technological advancements in the field

of artificial intelligent techniques like artificial neural networks (ANN), fuzzy

logic, and metaheuristic algorithms have imparted better capabilities in such

systems. Researchers have implemented these techniques on robotic systems

and are termed as intelligent control schemes [8].

3

1.3 Robotic Manipulators

Robotic manipulators are inherently complicated, nonlinear systems. As

these systems are widely used in industry, efficient control of robotic

manipulators becomes crucial. A robotic manipulator’s dynamics refer to how

it moves and responds to external forces and torques and can be described

mathematically using the principles of classical mechanics. The robotic

manipulator’s equations of motion typically involve the displacements,

velocities, and accelerations of the links and joints, as well as the external forces

and torques acting on the system. The dynamics of a robotic manipulator are

affected by several factors, such as the mass and geometry of the links, the type

and configuration of the joints, the friction and damping in the joints, and the

control algorithms used to operate the system. One important concept is the

inverse dynamics problem, which involves determining the joint torques

required to produce a desired end effector motion. This problem is solved by

first calculating the gravitational, centrifugal, and Coriolis forces acting on the

system, and then using these forces to calculate the required joint torques.

Understanding the dynamics of a robotic manipulator is essential for designing,

controlling, and optimizing robotic systems in a wide range of applications.

These robotic manipulators comprise actuated end-effectors, links, and

joints. The links' joints are exposed to torques, and the locations of the links are

tracked. It is difficult to predict the dynamics of such systems because of their

inherent nonlinearities and uncertainty. To determine the dynamic of robotic

manipulator systems, the Euler-Lagrange system is employed. This Lagrangian

function takes the links' potential and kinetic energy into account [2].

Lagrangian equations of motion are used to this function to derive the dynamics

of the system. Robotic manipulators are used in a wide range of sectors, such as

process engineering in the chemical, oil & gas, space technology, and medical

sciences [5]. These manipulators perform the tasks with higher speed and

accuracy. Therefore, effective control of system output variables such as

position and velocity are of the utmost required. A basic mechanical structure

having single degree of freedom (DoF) and one link only [9] has been used

4

frequently for analyzing and implementing control algorithms [4]. With the

increase in robotic technology, the structure with two or more DoF is used for

the aforementioned purpose, they are multi-link robotic manipulators generally

have two links or three links. In general, robotic manipulators fall into the

categories of single-link, two-link, and three-link manipulators. Multilink

robotic manipulators are manipulators with more than one link and have more

than one degree of freedom. Each link has mass and angular displacement. The

dynamic equations for a robotic manipulator have been presented in the next

chapter.

1.4 Motivation of the work

Control and optimization of nonlinear systems are always challenging areas for

researchers. Researchers are controlling these systems using various control

methods like PID, robust, adaptive, and Sliding mode control. Such methods

require precise knowledge of the system’s dynamics. This introduces certain

complexity because of nonlinearities in the system. Conventional controllers

give improved performance when intelligent techniques or intelligent methods

are assimilated with them. These intelligent control techniques are capable of

inducing some decision-making capability that leads to improved performance

of robotic systems. Metaheuristic algorithms have gained much popularity with

the growth of artificial intelligence, this fascinates researchers to implement

these techniques to find the optimal solutions. The use of such metaheuristic

algorithms helps to obtain the optimal parameters of the control schemes. Thus,

with the employment of intelligent control methods, the system will be able to

perform its task efficiently with increased capability and payload capacities.

1.5 Objectives

The key objectives of this thesis work are:

1. Mathematical modeling and stability analysis of robotic manipulator.

2. Comparison and analysis of intelligent control techniques.

3. Optimization of the robotic manipulator using metaheuristic algorithms.

5

1.6 Thesis Organization

The completed research work is compiled in the following subsequent chapters:

1.6.1 Chapter 2: Literature Review

Previous research work focused on every aspect of controlling robotic

manipulators using intelligent control methods has been presented in this

chapter. It also consists of theoretical and realistic implications of these control

methods on the trajectory control of robotic manipulators. In order to compile

information on the earlier research carried out on trajectory control of

manipulators, a comprehensive literature survey is conducted along with its

complete architecture. Metaheuristic algorithms have gained popularity among

researchers to solve complex problems. Implementation of these algorithms on

robotic systems has been presented in this chapter. In addition to this analysis,

the key features, advantages, and disadvantages have been presented in this

chapter.

1.6.2 Chapter 3: Analysis of control strategies for robotic manipulator

In this chapter, the control strategies implemented for trajectory tracking have

been presented. The methods like PID, FOPID, Robust, and Adaptive control

with their architecture and mathematical formulation have been discussed.

1.6.3 Chapter 4: Optimization and statistical analysis of control

techniques for linearized model

In this chapter, the control techniques PID and FOPID have been designed using

the metaheuristic algorithms GWO, WOA, MFO, and MVO for a linear model

of a two-link robotic manipulator. Also, the mathematical formulation of these

algorithms has been presented. These algorithms have been used to find the

optimal gains of the controller. The effectiveness of these algorithms has been

evaluated by performing a statistical analysis.

6

1.6.4 Chapter 5: Optimization and statistical analysis of control

techniques for nonlinear model

In this chapter, the control techniques PID has been designed using the recent

metaheuristic algorithms ASO, AOA, SHO, and STO for a nonlinear model of

a two-link robotic manipulator. Also the mathematical formulation of these

algorithms has been presented. These algorithms have been used to find the

optimal gains of the controller. The effectiveness of these algorithms has been

evaluated by performing a statistical analysis. A novel hybrid algorithm

STOPSO has been designed and presented in this chapter.

1.6.5 Chapter 6: Conclusion and Future Work

In this chapter the outcomes of the research work are concluded and presented

along with its future aspects.

7

Chapter 2

Literature review

2.1 Introduction

The design of robotic manipulators and their control have drastically changed

as a result of robotics technological innovations. Almost every industry

including Electrical, mechanical, process, and medical use manipulators to

reduce labor costs and increase accuracy. Effective controlling of manipulators

is challenging because of their inherent complex dynamics, uncertain behavior,

and nonlinearities. Researchers are developing many ways to implement

effective control strategies using classical, modern, and intelligent techniques.

To perform the tasks, robotic manipulators interact with the real environment in

all intended applications. Therefore, the requirement of understanding the

input–output relations arise, Thus, there is a requirement for intelligent control

techniques. The control of robotic manipulators has been greatly impacted by

the revolutionary rise in artificial intelligence. In this chapter, various intelligent

control strategies used in robotic manipulator systems are thoroughly reviewed.

The intelligent control methods include ANN, FLC, expert systems,

metaheuristic algorithm, and machine learning control (MLC).

The ability to emulate human intelligence makes these intelligent control

methods popular for controlling robotic systems. Conventional control methods

like PID SMC, robust, adaptive optimal, and FOPID have been implemented in

robotic systems to achieve the control objectives. These intelligent control

methods improve control performance when integrated with conventional

methods under performance constraints.

8

2.2 Intelligent Control Methods

Intelligent control refers to the implementation of AI techniques such as fuzzy

logic, neural networks, machine learning, and optimization algorithms in

control strategies to attain the desired performance of physical systems [13].

The system acquires certain characteristics like learning capacity, memory, and

the ability to handle unidentified or unanticipated conditions. This control

makes decisions based on approximation theory, which estimates any

circumstance or representation. Intelligent control techniques have been proven

effective in complex systems [8].

Figure 2.1 Intelligent Control Methods

Thus intelligent control is the use of AI techniques to achieve the control

objectives by improving the performance of the system. These methods include

FLC, expert systems, ANNs, deep learning, machine MLC, and metaheuristic

algorithms for optimization, and are known as soft computing methods. The

implementation of such methods in robotic systems provides the ability to

achieve the intended objective effectively. Figure 2.1 presents the intelligent

control methods used for the controlling the robotic systems. ANNs are inspired

by the human brain neurons and inculcate the learning ability, FLC implements

the fuzzy theory-based control, and the metaheuristic optimization techniques

help to obtain the optimum solutions for the control law and the system’s

parameters.

9

Expert control is software-based programs that integrate the system with an

inference mechanism to achieve the desired control output. Researchers have

been implementing each of these techniques extensively to control the robotic

manipulators for problems like trajectory tracking and path planning. Each of

these technologies significantly impacts the performance of the robotic systems.

All these methods have been discussed and reviewed in the subsequent

subsections.

2.2.1 Artificial Neural Networks

ANN gives the biological intelligence of neurons to the systems. Input, hidden,

and output layers are the three distinct layers that constitute the framework of

the ANNs. Based on data relating to manipulators, these neural networks train

the variable or parameters. Neural networks have various configurations, like

feed-forward, feedforward neural networks based on backpropagation, and

recurrent neural networks [14]. Feedforward neural networks- This network

does not have any feedback mechanism or loop. Backpropagation based

feedforward neural networks– in this type, a sigmoid function is used as an

activation function. This may have multiple hidden layers. Radial basis

feedforward neural networks based on backpropagation- It merely includes one

hidden layer and a radial basis function, which is the activation function.

Recurrent Neural Networks are another popular networks- The learning of

neurons is necessary for this neural network-based control mechanism; input-

output mapping handles the learning and makes feedback available in a loop.

Because of feedback availability, it shows the related information in a bi-

directional way. This network frequently serves the purpose of

controlling robotic manipulators. Neural networks are often utilised to control

robotic manipulators due to their nonlinear and complicated dynamics [15].

10

 Figure 2.2 Architecture of artificial neural networks

Figure 2.3 Architecture of ANN based control methods

Figure 2.2 and Figure 2.3 presents the architecture of neural networks and the

control schemes based on such networks. Bin Jin [16] demonstrated a neural

network-based backpropagation and calculated torque control. Prior knowledge

was included into the control design, resulting in error convergence and quick

and effective control. In [17], the authors presented chaotic neural networks

based direct adaptive control of robotic systems with three axes. Since chaotic

neural networks feature internal feedback loops inside their layers, they have a

substantial influence on the dynamics of robotic manipulators. The proposed

neural network uses a PD controller and a backpropagation method as a learning

technique. Improvement in performance over recurrent neural networks is

shown through simulation findings. SMC is a nonlinear control method used for

the controlling a robotic manipulator system. In [18], the authors designed a

Robotic Manipulator
system

Process

Reference

Input

Neural Network-based controller

11

SMC for a robotic manipulator utilizing ANN for trajectory control issues. The

system's uncertainties are addressed by a three-layer neural network. The

suggested controller is stable, as demonstrated by Lyapunov's theorem. The

proposed controller's robustness is verified by simulation, although it has a

chattering effect. In [19], the authors proposed a neural network-based SMC

with a chatter-free response for a robotic manipulator system. The nonlinearities

and uncertainties in the system under consideration are approximated by an

RBF neural network. Hence, it is a neural network-based SMC having chattered

free response. The convergence of the position tracking error is demonstrated

using the Lyapunov stability theorem. Robotic manipulators' nonlinear and

unpredictable dynamics have been well suited to SMC. It responds more quickly

and can effectively manage the innate uncertainties. When learning and

estimating uncertainty in manipulators, neural networks perform effectively.

The authors in [20], proposed a unique SMC for robotic manipulators

employing neural networks, with the weights being set by a fuzzy supervisory

controller. Combining all these techniques, it is known as fuzzy supervisory

sliding mode neural network control (FSSMNNC). The Lyapunov approach

validates the developed controller's steady response and error convergence.

The authors of [21] described a neural network-based adaptive controller for

trajectory control of a robotic manipulator that uses a proportional derivative

(PD) controller. The suggested controller performs better since the neural

network simulated the system's nonlinearities and uncertainties. The

performance of the controller, approximation, and tracking errors are all

improved by the Lyapunov function. In [22], the authors have shown an

adaptive neuro controller for a robotic manipulator system utilising a radial

basis function neural network (RBFNN). The unpredictable and nonlinear

dynamics of a robotic manipulator are approximated by RBFNNs because they

are theoretically tractable. A Signum function-based saturation function serves

as an auxiliary controller that ensures the suggested control scheme's stability

and resilience in the face of system uncertainties and disruptions.

In [23], the authors have applied neural networks in the form of a nonlinear

compensator to control the trajectory of robotic manipulators. The authors

proposed a model learning scheme that was efficient in the effective learning of

12

the manipulator dynamics that provided effective control. Authors proposed a

full-state feedback neural-based control for trajectory control of flexible joint

manipulators which have very high uncertainties in dynamics. Lyapunov’s

function validates the stability and effectiveness of the proposed controller. In

[24] the authors have demonstrated the shortcomings of RNN solutions for

motion control, such as error accumulation and convexity restriction for robotic

manipulators. To address these problems, the authors suggested two modified

neural network techniques. The modification of the control law by modifying

the constraints resulted in unique ways for error accumulation and convexity

restriction of robotic manipulator motion control. Both rigid and flexible joint

robotic manipulators can benefit from neural networks.

2.2.2 Fuzzy Logic Control (FLC)

Fuzzy control is a way for representing and implementing the knowledge of a

(smart) human about how to control a system. Fuzzy logic was the invention of

Prof. L.A. Zadeh in 1965 [25]. The application of this FLC in steam engine

control by Dr. E.H.Mamdani [26] made this popular. The fuzzification, fuzzy

inference, and defuzzification are three-step used to implement a FLC [27]. The

fuzzification is known as converting the input values into fuzzy sets with the

help of fuzzy rule bases. This is the initial step in the design of the FLC.

Fuzzification considers the uncertainties of the systems and evaluates the

conditions for the controller design. Fuzzy Inference identifies which control

rules should be applied to the fuzzified inputs and outputs the controller in the

form of fuzzy sets. Defuzzification is the process of getting the actual output

from the fuzzy output of the controller, and it therefore interacts with the actual

system or mathematical model under consideration. A FLC based controller

architecture is shown in Figure 2.4 below. FLC offers consistently improved

results for systems operating in a nonlinear, complicated, and unpredictable

environment.

13

Figure 2.4 Fuzzy Logic-based control approach

There are two popular approaches to design the FLC for a nonlinear system

i. Mamdani Approach

ii. Takagi & Sugeno’s Approach

Mamdani's technique employs linguistic fuzzy modelling, which has a high

interpretability but a poor accuracy, whereas Takagi and Sugenos' method

employs exact fuzzy modelling, which has a high accuracy but a low

interpretability. Due of the inherent complexity, uncertainties, and nonlinearity

in robotic manipulators, massive computations are required, designing the

control law complex task. FLC describes the dynamic modelling and

computational time constraints efficiently. It is an important part of intelligent

control for controlling the robotic manipulators in an intended manner. FLC is

implemented at a hierarchical level. C.M Lim and T.Himaya [29] presented the

application of FLC in robotic manipulators. The authors illustrated how to use

fuzzy logic to simplify control rules and improve a system's performance. The

authors designed a PI controller using fuzzy logic, where PI control provides

transients and steady-state features while fuzzy logic enhances the damping

properties. By measuring the parameters and giving them a membership

function value thus obtaining fuzzy sets, the control law is determined. Every

rule has a value for the outcome's membership function. A linear combination

of results for each rule with membership function weights yields the final

control action. Simulation experiments have been used to verify this method's

efficacy. In [30], the authors implemented a ordered control on a robotic

manipulator using FLC. The authors designed a fuzzy PD controller for joint

torques and positions whereas kinematic aspects are in supervisory mode. Thus,

it has a hierarchy in control. A comparative study of fuzzy PD and conventional

Fuzzification---------> Defuzzification

 Rule Base

Robotic Manipulator

system

Reference

Input

Fuzzy based Controllers
Process

14

PD controllers is presented, and fuzzy PD gives better performance. In [31], the

authors have designed a CS algorithm tuned optimal fuzzy PID controller.

Another hybrid fuzzy PID based control schemes for robotic systems have been

illustrated in [32]. Multivariable and nonlinear dynamics of robotic

manipulators make it difficult to design the control law. By taking this into

account, the authors of [33] suggested a model-free hybrid fuzzy logic and

neural network-based control method that takes into account the multi-input

multi-output (MIMO) characteristics of robotic manipulators. Joint locations

are controlled by a fuzzy logic controller, and the coupling between joints is

controlled using backpropagation neural networks. Consequently, neural

networks enhance the performance of controls. The experimental results

demonstrate that this technique improves trajectory tracking. For a multi-link

robotic manipulator, the authors in [34] developed a robust fuzzy model control

algorithm that considers torque disturbances and measurement noise, a self-

tuning adaptive fuzzy technique with a mechanism for adjusting the parameters.

This method is unique because it employs a rule-base of the IF - THEN control

input type. The suggested method offers increased stability and transients. The

Lyapunov stability approach confirms that the tracking error is confined. The

authors in [35], developed the fuzzy support vector machine (SVM) control

methods for robotic manipulators in combining the genetic algorithm (GA) and

the least square algorithm (LSA). SVM identified the system's FLC and

nonlinearities. The controller's parameters have been tuned using the techniques

for optimization GA and LSA. While GA performed the live optimization of

these parameters, LAS performed the offline optimization of the SVM

parameters. Studies in simulations have verified the efficacy of the suggested

control technique. For a nonlinear MIMO robotic system, a PD-type fuzzy

iterative learning control (ILC) [36] was developed. The gains of the PD type

ILC controller design was optimized using fuzzy logic. In [37] authors

presented an adaptive fuzzy state feedback design for a flexible robotic

manipulator system. Fuzzy logic has approximated the uncertainties and

actuator saturation. The combination of backstepping and command filtering

developed a novel adaptive fuzzy tacking backstepping control.

15

FOPID is a reliable and proficient approach for controlling nonlinear and

unpredictable systems such as robotic manipulators. Researchers are

implementing this method for controlling nonlinear systems. The authors

introduces a fractional order fuzzy (FOFPID) [38] controller for

manipulator's trajectory control. The suggested controller is strong enough to

handle the system's nonlinearities and uncertainties. Using fuzzy inference rule

bases, input variables like error, its derivative, and its integration are fuzzified.

The authors compared the performance of conventional PID, fuzzy PID,

FOPID, and FOFPID. Integral absolute error (IAE) and integral of absolute

change in controller output serve as performance indicators for the controllers

(IACCO). The Cuckoo search (CSA) method has been used to fine-tune the

controller's settings. As an outcome, among all the controllers compared, the

FOFPID controller performed the best. In [39] the authors, have proposed An

NLA-FOPID controller for a two-link robotic manipulator. The proposed

controller was evaluated for trajectory tracking, disturbance rejection, sensor

noise rejection, and a number of other system uncertainties. The parameters of

the controller have been optimised using the backtracking search algorithm

(BSA). In comparison to the nonlinear adaptive fuzzy PID controller, the

suggested controller provided better and enhanced performance. In [40] the

authors, presented a fuzzy fractional order PID (FFOPID) for a robotic

manipulator aimed for tracking the trajectory. The controller manifolds PID

error. The controller is calculated by a fuzzy inference system using the PID

elongated error and fractional order integral. Zafer Bingul et-al. [41]

developed the Mamdani type FLC for trajectory tracking of a robotic

manipulator. The three separate cost functions used for PSO are mean of the

absolute magnitude of error (MAE), mean of the squared root of error (MRSE),

and reference-based error with control effort (RBECE). The suggested

controller has been demonstrated as more reliable and efficient when compared

to traditional PSO tuned PID. In the majority of applications, robotic

manipulators are employed to repeatedly carry out different tasks. In [42], the

authors presented a repeating learning control using adaptive fuzzy logic. After

implementing an adaptive fuzzy approach, fuzzy logic is used to model the

initial step's uncertainty. The proposed method is novel since it uses dynamic

16

rule bases and hence features self-tuning membership functions. The closed

loop's boundedness is ensured via the Lyapunov approach. In [43] the authors,

proposed the interval type-2 fuzzy PID integral control approach, using GA to

tune the controller's parameters. The fitness function was the integral of the time

square error (ITSE). The suggested technique was determined to be more

reliable and effective in a comparison analysis of the proposed controller with

type-1 fuzzy PID and conventional PID. Fuzzy logic has a positive impact on

SMC's ability to handle the system's uncertainty. In [44], for trajectory control

of robotic manipulators, the authors introduced a MIMO adaptive fuzzy

terminal SMC. The suggested approach incorporates an adaptive system for

terminal SMC together with the benefits of fuzzy logic. It performed better

when compared to alternative ways. The convergence of the error was given by

the bounded Lyapunov stability criteria. Based on hybrid PSO-GA optimization

approaches, the authors of [45], developed a type-1 and type-2 FLC for robotic

manipulator trajectory control. These techniques have been employed to

calculate the membership function values of the proposed fuzzy controllers.

Fuzzy logic is a prominent pick for robotic control systems. The literature

clearly demonstrate that researchers are employing these meta-heuristics

algorithms to adjust the parameters of control techniques to provide intelligence

in robotic manipulator’s control.

2.2.3 Expert Control Systems (ECS)

ECS are intelligent control technique that simulates the expertise of a human

expert while providing effective control. They integrate control design into the

system and create an inference mechanism [46]. These control methods do not

require precise information and thus can handle information uncertainty

effectively. Expert systems are intelligent algorithms that use knowledge and

inference procedures to solve complicated problems [47]. To perform the

intended tasks the systems get decision making abilities utilizing the inference

mechanism based on certain rules. The rule base creates reasoning and

determines the logic so that the inference mechanism can infer the conclusions

from knowledge base.

17

An ECS expert control systems are computer-based programs that replicate

human intelligence by using an inference mechanism and thus can deal the

complex real-time problems effectively. In [48], the authors have presented the

design, principles, classification, and some implementation issues in the expert

control methods. Several challenges need to be addressed when implementing

these approaches including real-time operational knowledge bases, competent

online information environments, real-time intelligent controller design,

parallel reasoning, and an intelligent interface between control schemes and the

user. Therefore, it is relatively perplexing to implement such techniques in real

time with the real rule base.

The technological advancements in AI techniques like FLC and ANN have

created more opportunities to design expert control methods. The architecture

of an expert control system utilizes a model of the system, an inference engine

to perform a real-time control mechanism, a knowledge base, a learning

mechanism, and an interface to the user. In [48], the authors have proposed the

guidelines and the development method of expert control systems in six

different phases. Table 2.1 illustrate the six phases of the development of an

expert control system.

Table 2.1 Development model of an ECS

S. No. Development

Stages

Description of each stage

1 Feasibility analysis

 Analysis of all the issues such as cost, and

development time is carried out.

2 System

specification

In this stage, the problem is defined, and a task

assessment has been performed.

3 System design This is the actual design stage that includes the

concept and logic of control, and structure design.

18

4 System

Construction

The system is being built with an inference

mechanism and a real-time algorithm.

5 Software design Using AI-based algorithms the software has been

designed.

6 Evaluation stage This stage evaluates the efficiency and usability

of the designed control.

In the very first step, a feasibility study is performed and all issues such as cost,

resources, and development time need to be evaluated. The second stage focuses

on system specification and defines the problem and assesses all the tasks to be

completed. The third steps determine the structure of control and create the

concepts and logic. This stage is the system design and is very important in the

development of expert control. The next stage is the actual construction stage

where the inference mechanism and real-time control law is determined. The

software model utilizing AI-based algorithms has been designed in the fifth

stage. Finally, the last stage is about evaluation that checks the control designed

for efficiency and usability. In this stage, expert control is evaluated in all

aspects.

The expert control has been designed for robotic applications by researchers. Z.

Geng and M. Jamshidi [49] designed a real-time ECS for trajectory tracking of

a robotic manipulator having two links. An expert self-learning controller for

controlling the trajectory problem of the manipulator having mathematical logic

and procedures has been designed. This eliminated the constraints like the

requirement of suitable system dynamics and disturbances have been eliminated

by imparting decision-making in the proposed self-learning controllers. Hence

the precise model is not required, and a data-rule base was able to meet the

system requirement. Astrom et-al. [50] illustrated the heuristics and logic in

expert control law that makes the conventional method simpler and easier. The

authors proposed the rule-based expert system architecture having the

components like the rule base creating the reasoning, database, and inference

engine- imparts the decision making, and user interface.

19

In [51], the authors have suggested an expert intelligent control algorithm for a

real-time path formation of a manipulator. The proposed algorithm was able to

generate three different paths having a decision-making capability to avoid and

obstacle and discover the shortest path. It is evident from the literature that ECS

is preferred for complex systems. The requirement of a perfect knowledge base

makes these expert control methods complex. The popularity of FLC, ANN,

and other AI techniques has gained more popularity in the control of robotic

systems.

2.2.4 Machine Learning Control (MLC)

MLC is a model-free control technique that has gained popularity recently and

effectively manages complex nonlinear dynamics [52]. It is a data-driven

control methodology that suits the model-free dynamics. The main focus of

MLC is on the control law, and the controller adapts to any known or unknown

dynamics. MLC is a blend of machine learning techniques, complicated

dynamic nonlinear systems, and feedback control [53]. It is a technique for

controlling and analysing the nonlinear systems and do not require knowledge

of the system's precise model.

Figure 2.5 Architecture of MLC

The metaheuristic optimization algorithms such as GA, PSO, and ABC

determine the control law using specific objective functions. Figure 2.5 presents

the architecture of MLC. Thus tuning the parameters imbibes the intelligence in

20

this control scheme MLC combines the advantages of machine learning with

artificial intelligence. MLC is an evolving development in the control of

complex systems. The data availability provides learning and improves the

performance of the systems. N. Gautier et- al. in [54] illustrated this model-free

in flow control based utilizing the genetic algorithm. Considering the popularity

of this control approach, there is an utmost requirement of for the mathematical

formulation of MLC. Akshat Diveev et-al. [55] formulated the mathematical

concepts for this control using supervised and unsupervised learning theories.

The authors implemented neural networks to calculate the parameters for an

unknown function that maps the input and output. Shouyi Wang et al. [58]

reviewed the supervised, unsupervised, and reinforcement learning mechanisms

in machine learning and analyzed their applications in bipedal robotic control.

In [53] the authors proposed an MLC in real-time for a robotic manipulator.

This control has been designed using a hybrid artificial bee colony (ABC) and

a fuzzy theory-based learning algorithm. A fractional order PID MLC has been

proposed where the hybrid ABC fuzzy algorithm has been implemented to tune

the controller aimed for motion control a six degree of freedom articulated

robotic manipulator.

Fuzzy rules, membership functions, and fractional controller gains have been

computed using the ABC algorithm. The proposed FOPID MLC was tested

against the PID and fuzzy PID, and found to be effective for motion control of

the manipulator. This sets the stage for future research in the machine-learning

control of robotic manipulators. Without having full knowledge of the system,

MLC provides the control mechanism for a system. This capability paves the

way for more research into robotic manipulator control using MLC.

2.2.5 Optimization Algorithms

Optimization is the process of achieving the best feasible solutions for the

control design parameters by either minimizing or maximizing the computed

objective function within the restrictions identified. These optimization

techniques include evolutionary algorithms like a genetic algorithm (GA) and

other nature-inspired algorithms based on the intelligence of a swarm, known

21

as swarm intelligence like particle swarm optimization (PSO), ant colony

optimization (ACO), artificial bee colony(ABC), crow search optimization

(CSO), and whale optimization algorithm (WOA) [59] [60].

These optimization techniques are implemented to find the optimal solutions for

the controller parameters. Each of the control schemes has specific parameters

which determine the functionality of the uncertain and nonlinear dynamics of

the robotic manipulator in a desired manner.

Figure 2.6. Implementation of a metaheuristic optimization technique

in control

Figure 2.6 illustrates the implementation of optimization algorithms on control

techniques. Thus, considering the performance of robotic systems, these

metaheuristics optimization algorithms yield the optimum value of an intended

objective function [61]. For tracking the trajectory these algorithms are

implemented using an objective function which is formulated on the basis of the

control law design. Four different types of error functions like IAE, ITAE, ISE,

and ITSE have been evaluated as objective functions [62].

The feedback control’s main aim is to minimize the error e(t). The generalized

form of the objective function is expressed below in eq. (2.1).

 𝐽 = ∫ 𝑡𝑎[𝑒(𝜃), 𝑡]𝑏𝑑𝑡
∞

0
 (2.1)

 𝑒(𝜃) = (𝜃𝑟 − 𝜃𝑣) (2.2)

22

J is the cost or objective function and (𝑒(𝜃), 𝑡) is the error. The difference

between the desired or reference trajectory and the actually obtained trajectory

is termed as an error. For different values of a and b different types of error

functions are obtained.

a=0 and b=1; Integral Absolute Error IAE,

a=1 and b=1; Integral Time Absolute Error ITAE,

a=0 and b=2; Integral Square Error ISE,

a=1 and b=2; Integral Square Time Weighted Error ISTE

a=2 and b=2; Integral Square Time Squared Weighted Error ISTSE

In robotic applications, these metaheuristic algorithms minimize the error

function by providing the optimal values of controller parameters. One of the

key objectives of implementing these metaheuristic optimization algorithms in

the control of robotic manipulators is to find the optimal solution for problems

like trajectory control [63]. Table 2.2 shows the applications of metaheuristic

algorithms in robotic manipulators. All of these algorithms pave the way for

intelligent control of robotic manipulators. The controller’s parameters are fine-

tuned using these and better performance of the system has been achieved using

these algorithms.

Table 2.2 Applications of metaheuristic algorithms in robotic manipulators

Year Algorithm Inspiration Application in Robotic

Control

References

1975 GA Evolution Adaptive FLC, Computed

torque control. Optimal

PID and SMC. Adaptive

control, Multi-objective

PID, PID controller.

[63],[66],[6

7],

[68],[69],[7

8]

[79]

1995 PSO Bird flock FOPID for a robotic wrist

having two links, fuzzy

PID for a two-link robotic

manipulator. Multi-

objective FOPID

[62], [63],

[67]

[77], [80],

[81]

[82]

23

For trajectory tracking utilising multi-objective PSO (MOPSO), a FOPID

controller is described in [62]. The suggested controller demonstrated greater

performance in tracking trajectories and managing system uncertainties. The

2006 ACO Ant colony PID controller. Optimal

path planning

[63], [71],

[83]

[84], [85]

2006 ABC Honeybee Hybrid ABC-GA-based

fuzzy FOPID, Type 2

fuzzy PID. MLC. Optimal

PID for a two-link robotic

manipulator.

[53],[86]

[87], [95]

2009 FFA Fireflies’

social

behavior

Path planning for robotic

system

[88]

2013 GWO hunting

mechanism

of grey

wolves

PID controller. Hybrid

GWO-ABC tuned FOPID.

Hybrid GWO- WOA

tunes FLC.

[89].[90],[9

1]

2016 WOA Social

behavior of

humpback

whales

PID for a robotic

manipulator. Sliding mode

controller (SMC)

[92],[93]

2017 BAS foraging

behavior of

the beetle

RNN for tracking control

& impediment prevention

of a robotic manipulator

[72]

2017 CSO The

behavior of

the chicken

swarm

Trajectory planning of

manipulator

[70]

2018 CSA Behavior of

Cuckoos

FOPID for a robotic

manipulator.

[76]

24

authors in [63] illustrated trajectory control utilizing several metaheuristic

optimization techniques. The location and joint objectives are part of the

optimization problem's objective function. Yadav et al. [64] used the traditional

Zigler Nichols approach with optimization algorithms like GA, PSO, and ACO

to create a hybrid controller for motion control of a robotic manipulator. All

other methods, including the traditional Zigler-Nichols approach, are

outperformed by the GA. The majority of engineering applications use multi-

objective optimization, which frequently identifies solutions that meet many

objectives. Contrary to conventional methods, tuning the controller using multi-

objective optimization techniques is challenging since it must exhibit high

precision, energy savings, and the required response.

In [65], the authors presented a multi-objective evolutionary optimization

method for the trajectory control of a two-link robotic manipulator using a non-

dominated sorting GA (NSGA-II). This approach iterates to deliver the best

gains for multivariable PID controllers for the best fitness functions under

specific initial conditions. An effective solution selection method based on

classes of dominance is implemented by the NSGA-II algorithm. The way the

selection operator operates is different from GA. The suggested optimization

method, which is based on NSGA-II, offers a useful way to create

straightforward solutions with high reliability in closed loops. M Vijay et al.

[66] employed GA to create PD and PID controllers with high dynamic

characteristics, global stability, better disturbance rejection, and minimal

tracking error. This is a basic direct search technique that doesn't rely on

numerical or analytical gradients. As an objective function, three distinct error

functions- IATE, ISE, and ISTE have been evaluated. ISTE gives the lowest

value of the objective function in comparison to other methods, while a GA-

tuned PID controller produces the lowest tracking error and best disturbance

rejection. In [67], the authors have proposed a novel nonlinear fractional PID

controller for a two-link robotic manipulator. NSGA-II is implemented to

optimize the related parameters and controller gains for minimum error value

and control variations. The designed NLF-PID controls the two-link robotic

manipulator effectively. In [69], authors designed two PID controllers for

tracking control of both links of a robotic manipulator using the GA. The

25

performance indices used in this case are the integral square error (ISE) and

the integral square of change in controller output (ISCCO) for both links. It was

statistically determined that there is always an optimum solution within a certain

range by executing this optimization 2000 times.

The application of nature-inspired algorithms in optimum trajectory planning of

robotic manipulators is very well evident in the literature. In [70] the authors

have implemented CSO to track the trajectory of manipulators. The trajectory

is generated using a B-spline. To determine the optimal trajectory, the minimum

travelling time is considered as a fitness function. The experimental results

support the proposed algorithm. In [71], authors designed ACO tuned PID

controller to achieve optimal trajectory tracking of robotic manipulators. The

authors tuned the controller gains using ACO for both scenarios, i.e. with and

without external disturbances. The proposed method has been proven effective

and Simulation studies shown the fast convergence of error. For tracking

control and obstacle avoidance of a robotic manipulator, Ameer Hamza Khat et-

al. [72] introduced a metaheuristic control method beetle antenna olfactory

RNN. This strategy combines the tracking control and obstacle avoidance

problems by adding a penalty term to the cost function. The beetle's olfactory

capabilities for locating food are the inspiration for this optimizer. The

efficiency of the suggested control framework is confirmed by the results of the

simulation studies. In [73], the authors proposed an intelligent algorithm

Weighted Jacobian Rapidly exploring random tree (WJRRT) for path planning

of robotic manipulators. Each node of the tree in the WJRRT algorithm has a

fitness rating that aids in deciding the ultimate route. Several robotic

manipulator models are simulated, and the results are compared using the

Jacobian Transpose (JTRRT), Bidirectional RRT (BiRRT), and Tangent Bundle

RRT (TBRRT) algorithms. Making the hybrid algorithm provides the

opportunity to the use of the advantages of these metaheuristic optimizations.

In [74], the authors introduced a novel hybrid artificial bee colony-genetic

algorithm (ABC-GA) optimization technique-based fractional-order fuzzy pre-

compensated fractional order PID (FOFP-FOPID) controller. In trajectory

tracking, the ITAE function has been considered as the objective function. The

intelligent control of robotic manipulators is an area that researchers are very

26

interested in; hence these metaheuristic algorithms are quite important. A

comparison of several optimization techniques for controlling robotic

manipulators was presented by Richa Sharma et al. [75]. The authors used GA,

PSO, and simulated annealing (SA) to adjust the traditional PID controller. The

simulation results demonstrate that PSO performs better than GA and SA. As a

result, optimization approaches have been extensively used and are currently a

prevalent method for developing control mechanisms.

2.3 Comparison of intelligent control methods

The intelligent control methods have the ability to alter the performance of the

robotic manipulator systems robustly. Such methods introduce intelligence in

the manipulators by imbibing decision-making. ANN-based control methods

impart the learning mechanism using the data as training and test sets. ANN

control method is proven efficient but requires large real-time training and test

data sets. FLC has a sophisticated rule base construction yet manages the system

uncertainties well. Expert systems are software program-based control methods

that requiring an extensive knowledge data base which makes them complex.

MLC is a model-free control approach that does not require exact mathematical

modelling. The metaheuristic optimization algorithms are used in design of

MLC controllers. Optimization techniques find optimal values of the controller

parameters; based on these parameters, a cost function is optimized. This cost

function measures the system's performance. Thus, these optimization

techniques optimize the system performance for a particular problem like the

trajectory control of robotic manipulators. The previous section reviews the use

of several of these optimization strategies. The no free lunch (NFL) theorem

states that no optimization strategy can provide the optimal outcomes for all

optimization problems. As a result, researchers are continuously developing

novel optimization techniques like the red fox optimization algorithm (RFO),

Tunicate Swarm algorithm (TSO), Marine Predators Algorithm (MPA), Chimp

optimization algorithm (COA), Water strider algorithm, and Student

psychology-based optimization method (SPBO), crow search algorithm (CSO),

and Owl search algorithm (OSA) [96], [97] to solve distinct complex

engineering problems. Future research will be facilitated using these novel

27

methodologies for the intelligent control of robotic manipulators. Each of these

methods has certain benefits and drawbacks. Table 2. 3 presents the important

characteristics including specific advantages and disadvantages of all intelligent

control methods.

Table 2.3 Key features of intelligent control techniques

S.

No.

Intelligent

Control

Methods

Key features Advantages Disadvantages

1 ECS Has an inference

mechanism requiring

a knowledge base.

Employed in process

industries.

Making

decisions with

a knowledge

base. Rapid

and consistent.

Requirement

of a perfect

knowledge

base.

2 FLC Fuzzification,

defuzzification, and,

rule based.

Simple, easy

and effective

scheme.

The

construction of

rule base is

complex.

3 ANN based

Control

Training of neural

networks is essential

in this data driven

method.

Effective with

sufficient data

sets. Inculcates

intelligence

and decision

making.

Huge training

and test data

sets are

needed.

4 Optimization

algorithms

Determine the best

(optimal) solution.

Proficient when

implemented control

techniques.

Stochastic nature.

Simple

approach,

provides the

optimal

solution for an

optimization

problem.

Execution of

these

techniques is

challenging

and time-

consuming.

28

5 MLC No need for exact

knowledge of system.

Metaheuristic

algorithms are

implemented to

determine the

controller.

It is a model-

free technique.

The system

does not need

to be precisely

modelled.

The controller

design is

complex for

varying

conditions

AI has gained in popularity as a result of technological developments. AI

enabled intelligent control graces humankind's intelligence to robotic systems.

Over the past few decades, robotics has greatly increased in popularity and

affected all industrial application fields. The use of the above-presented AI

techniques in robotic control applications has tremendously increased over the

last few decades. Intelligent control is the application of AI and optimization

techniques in robotic systems to achieve the desired goals [94]. The use of

intelligent control in robotic system applications has very prominent future.

29

Chapter 3

Analysis of control strategies for robotic manipulators

3.1 Introduction

Robotic manipulators are highly nonlinear and extremely uncertain systems.

These systems have applications in different areas including medical and

pharmaceuticals. Robotic systems provide assistance and help to humans by

performing some tasks. Technological advances and research have improved

robotics and robotic systems to a larger extent. Such systems have to interact

with real-time situations so precise control is required. Researchers are

continuously striving to explore new different methods to enhance the

performance of robotic systems.

Various conventional methods like SMC, adaptive control, robust control,

optimal control, PID, and FOPID have been implanted on robotic manipulators

for controlling the manipulators for problems like trajectory tracking and path

planning. Each of these control laws impacts the performance of robotic

manipulators. Further, the use of artificial intelligent techniques in combination

with such conventional methods has imparted decision-making in the robotic

system thus named intelligent control. In this chapter, the dynamics of two-link

robotic manipulators, modeling in MTALAB/Simulink, robust adaptive control,

SMC, PID, FOPID, and extremum seeking control have been presented.

3.2 Dynamics of a two-link Robotic Manipulator

A two-link robotic manipulator has been used for the validation of control

strategies [2]. Figure 3.1 presents a robotic manipulator having two links with

masses 𝑚1 , 𝑚2 length 𝑙1, 𝑙2, and angular positions 𝜃1, 𝜃2. The unit of mass is

kilograms, length is meters, and angular position is in degrees. The trajectory

control problem has been studied utilizing this model. This robotic manipulator

is modelled using the Lagrangian function which considers the energies of the

system.

30

Figure 3.1 A two-link robotic manipulator

The dynamics of a robotic manipulator is obtained using the Euler-Lagrange

technique. The Lagrangian function 𝐿 considers the kinetic and potential energy

of the links.

 𝐿 = 𝐾 − 𝑈 (3.1)

Where K is kinetic energy and U is potential energy of the system.

Total kinetic energy and potential energy of the system is as follows:

 𝐾 =
1

2
 𝑚2𝑙1

2�̇�1
2
+

1

2
 𝑚2𝑙2

2(�̇�1
2
+ �̇�2

2
+ 2𝜃1̇𝜃2̇) + 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2(�̇�1

2
+

𝜃1̇𝜃2)̇ (3.2)

 𝑈 = −(𝑚1 + 𝑚2)𝑔𝑙1 𝑐𝑜𝑠 𝜃1 − 𝑚2𝑔 𝑙2 𝑐𝑜𝑠(𝜃1 + 𝜃2) (3.3)

The Lagrangian function of the system can be represented as follows:

𝐿 =
1

2
 𝑚2𝑙1

2�̇�1
2
+

1

2
 𝑚2𝑙2

2(�̇�1
2
+ �̇�2

2
+ 2𝜃1̇𝜃2̇) + 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2(�̇�1

2
+

𝜃1̇𝜃2)̇ +(𝑚1 + 𝑚2)𝑔 𝑙1 𝑐𝑜𝑠 𝜃1 + 𝑚2𝑔 𝑙2 𝑐𝑜𝑠(𝜃1 + 𝜃2) (3.4)

Considering the Lagrangian function, the following equations of motions are

used to obtain the dynamics of the system,

 𝑇1 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃1̇
) −

𝑑𝐿

𝑑𝜃1
 (3.5)

 𝑇2 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃2̇
) −

𝑑𝐿

𝑑𝜃2
 (3.6)

31

After placing the Lagrangian function from eq. (3.5 - 3.6), following dynamical

expressions are obtained

 𝑇1 = [(𝑚1 + 𝑚2)𝑙1
2 + 𝑚2𝑙2

2 + 2 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2]𝜃1̈+[𝑚2𝑙2
2 + 𝑚2𝑙1 𝑙2

𝑐𝑜𝑠 𝜃2]𝜃2̈- 2 𝑚2𝑙1 𝑙2 𝑠𝑖𝑛 𝜃2 𝜃1̇𝜃2̇- 𝑚2𝑙1 𝑙2 𝑠𝑖𝑛 𝜃2 �̇�2
2
+(𝑚1 + 𝑚2)𝑔 𝑙1 𝑠𝑖𝑛 𝜃1+

𝑚2𝑔 𝑙2 𝑠𝑖𝑛(𝜃1 + 𝜃2) (3.7)

𝑇2 = (𝑚2𝑙2
2 + 𝑚2𝑙1 𝑙2 𝑐𝑜𝑠 𝜃2)𝜃1̈+𝑚2𝑙2

2𝜃2̈ + 𝑚2𝑙1 𝑙2 𝑠𝑖𝑛 𝜃2 �̇�1
2
+ 𝑚2𝑔 𝑙2

𝑠𝑖𝑛(𝜃1 + 𝜃2) (3.8)

Utilizing the above equations, the generalized equation has been written as

follows:

 𝑀(𝜃)�̈� + 𝐶(𝜃, 𝜃)̇𝜃1𝜃 + 𝐺(𝜃) = 𝜏 ̇ (3.9)
These equations can be expressed in the following general matrix form.

[
𝑇1

𝑇2
] = [

(𝑚1 + 𝑚2)𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2𝐶2 𝑚2𝑙2
2 + 𝑚2𝑙1𝑙2𝐶2

(𝑚2𝑙2
2+𝑚2𝑙1𝑙2𝐶2) 𝑚2𝑙2

2] [
�̈�1

�̈�2

] +

[
0 −𝑚2𝑙1𝑙2𝑆2

𝑚2𝑙1𝑙2𝑆2 0
] [

𝜃1̇
2

𝜃2̇
2] + [

−𝑚2𝑙1𝑙2𝑆2 −𝑚2𝑙1𝑙2𝑆2

0 0
] [

�̇�1�̇�2

�̇�2�̇�1

] +

[
(𝑚1 + 𝑚2)𝑔𝑙1𝑆1 + 𝑚2𝑔𝑙2𝑆12

𝑚2𝑔𝑙2𝑆12
] (3.10)

where,

𝐶1 = Cos (θ1) 𝐶2= Cos (θ2)

 𝑆2= Sin (θ2) and 𝑆12= Sin (θ1+ θ2)

�̈�1, �̈�2 = angular accelerations of the links. 𝜃1̇
2
, 𝜃2̇

2
 = centripetal acceleration

�̇�1�̇�2 = Coriolis acceleration. Coriolis acceleration is prevalent because the first link

serves as a rotational frame for link two. The nonlinear manipulator dynamics as shown

in eq. (3.9-3.10) has been linearized for trajectory tracking using the following steps.

1. To linearize, the system states has been assumed as follows

 𝑋1 = 𝜃1; 𝑋2 = 𝜃2; 𝑋3 = �̇�1; 𝑋4 = �̇�2 (3.11)

 �̇�1 = �̇�1 = 𝑋3; �̇�2 = �̇�2 = 𝑋4; �̇�3 = �̈�1; �̇�4 = �̈�2 (3.12)

32

2. The eq. (3.10) has been represented using different constants then

Taylors series expansion about its equilibrium points
𝜋

2
 and 0 has been

performed.

3. By differentiating, each variable is linearized with respect to all other

variables. The following state space equation model has been obtained

on linearizing about the equilibrium points:

 [

𝑥1̇

𝑥2̇

𝑥3̇

𝑥4̇

] = [

0
0

−0.4568
0.2485

0
0

−0.6196
−6.6174

1
0
0
0

0
1
0
0

] [

𝑥1

𝑥2
𝑥3
𝑥4

]+[

0
0

0.7870
0.0426

0
0

−0.0426
0.1349

] [
𝑇1

𝑇2
] (3.13)

 [
𝑦1

𝑦2
] = [

1 0 0 0
0 1 0 0

] [

𝑥1

𝑥2
𝑥3
𝑥4

]+[
0 0
0 0

] [
𝑇1

𝑇2
] (3.14)

For a stable system all the Eigen values must be negative, so on calculating the

Eigen values of the linear model obtained in eq. (3.13-3.14), Eigen values are

found to be complex conjugate thus making the system unstable.

 eig(A)= [

0.0000 + 0.6942i

0.0000 - 0.6942i
0.0000 + 2.5675i

0.0000 - 2.5675i

] (3.15)

Both the linear and nonlinear models considered for trajectory tracking problem

in the next chapters, are inherently unstable hence there is requirement of the

design of effective control method. The next sections describe the control

methods designed. Further metaheuristic algorithms have been implemented to

design the optimal control laws. The two angular positions of both links are

output trajectory that should track the reference trajectory.

MATLAB/SIMULINK software has been utilized to perform mathematical

modeling using the above equations. Figure 3.2 shows the flow diagram of

mathematical modeling and Figure 3.3 shows the Simulink diagram of the

mathematical model. A polynomial trajectory is given as a reference to two PID

controllers. S_rigid is the MATLAB script having dynamical equations of the

system. Two separate PID modules have been designed which are connected to

33

system model script. The separate error values and the combined outputs have

been shown in the display.

 Figure 3.2 Flow diagram of mathematical modeling

Figure 3.3 Simulink diagram of the mathematical model

MATLAB script ulitilizing the equations

Assigning the script in S- function

Simulink design using above s - function

34

3.3 PID and FOPID Control

PID controller is the most widely used industrial controller as more than 95 %

of the industrial controllers are PID in nature. It has a high degree of robustness

in controlling robotic manipulators due to their stability, adaptability,

simplicity, and real-time control capabilities. PID controller has three gains

namely, proportional, integral, and derivative. The design requires

implementation of three parameters KP proportional gain, KI integral gain, and

KD derivative gain. Each of these gains largely impacts the performance of the

system. The PID controller becomes effective when no offset error and

improved speed of response is required. Bennett, S. (1993) illustrated the PID

control theory and implementation to the complex systems [98]. The PID

controller’s equations and transfer function are written as follows:

 𝑌(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (3.16)

 𝑌(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝑠𝐾𝐷)𝐸(𝑠) (3.17)

 𝐺(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝑠𝐾𝐷) (3.18)

This controller gives the output according to the error signal. Finding the values

of KP, KI and KD is known as tuning the controller. Ziegler Nicholas and Tyreus

Luyben are the approaches used to tune the PID controllers. Numerous tuning

methods are available in the literature, some include conventional approaches

stated above while some employ intelligent methods such as metaheuristic

algorithms to implement these control algorithms.

Fractional calculus is capable of enhancing the performance of a traditional PID

controller. Including the fractional operators in PID is termed as fractional order

PID (FOPID). It is designed by changing the integral and derivative term of a

conventional PID to a fractional value ranging 0 to 1. Thus, it provides more

design flexibility to the system by using two more terms. In [99], the authors

have presented the trajectory tracking control of a three DoF robotic

manipulators using PID and FOPID control methods. The FOPID control action

is more effective as it provides additional gains to get the desired response [5].

The corresponding equation and transfer function of FOPID has been expressed

as follows [10]:

35

 𝑇𝑖(𝑡) = 𝐾𝑃𝑖
𝑒𝑖(𝑡) + 𝐾𝐼𝑖

𝑑−𝜆𝑖

𝑑−𝜆𝑖
𝑒𝑖(𝑡) + 𝐾𝐷𝑖

𝑑µ𝑖

𝑑µ𝑖
𝑒𝑖(𝑡) i=1,2 (3.19)

 𝐺(𝑠) = (𝐾𝑃𝑖
+

𝐾𝐼𝑖

𝑠𝜆𝑖
+ 𝐾𝐷𝑖

𝑠µ𝑖) E(s) (3.20)

Figure 3.4 Block diagram of PID controller design.

Figure 3.5 Block diagram of FOPID controller design.

Figure 3.4 and Figure 3.5 describes the implementation of the proposed PID and

FOPID control for a robotic manipulator having two angular displacements. The

robotic manipulator has multi-input multi-output (MIMO) characteristics so two

different PID and FOPID has been designed. Efficient tuning is necessary for

effective design of controllers. The metaheuristic algorithms GWO, WOA,

MVO, and MFO have been implemented to tune these controllers for optimized

gains. These algorithms require a performance criterion for the evaluation, so a

cost or fitness function has been considered shown in eq. (3.21-3.22). The

36

proposed control methods are being tuned by these metaheuristic algorithms

and thus, the optimum function value validates the effectiveness of these

algorithms. The fitness function has been defined as the weighted sum of the

integral absolute error IAE and the integral time absolute error ITAE of both

links as shown in eq. (3.21-3.22)

 𝑓 = 𝑤1 ∗ ∫ 𝑒(𝑡)𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑑𝑡 (3.21)

 𝑓 = 𝑤1 ∗ ∫ 𝑒1(𝑡)𝑡𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑡𝑑𝑡 (3.22)

𝑤1 and 𝑤2 are the weights assigned to IAE of both the links and their values are

0.5. A cubic polynomial reference trajectory for the nonlinear model and a fixed

step trajectory for the linearized model has been considered for tracking the

trajectory. These reference trajectories have been illustrated in detail in the next

chapters. The following steps present the methodology for achieving trajectory

tracking for a robotic manipulator using PID and FOPID methods:

1. Determine the reference trajectory to be followed by each link of the

robotic manipulator.

2. Design of a MIMO PID controller to control the trajectory.

3. Implementation of the recent metaheuristic algorithms to tune the

designed controllers.

4. Statistical analysis and attainment of the optimal gains with minimum

fitness value.

5. Design of a novel hybrid metaheuristic algorithm to enhance the

performance of the designed control scheme.

6. Comparative analysis of implemented algorithms by assigning them

Friedman’s ranking.

The PID and FOPID controllers have been designed using the four

metaheuristic algorithms GWO, WOA, MFO, and MVO for linearized model.

The PID controller has been designed for trajectory tracking using the

metaheuristic algorithms AOA, ASO, SHO, and STO for nonlinear models.

Then a novel hybrid algorithm STOPSO has been designed and implemented

using the PID controller for trajectory tracking. The detailed implementation

and results have been presented in next chapters.

37

3.4 Robust Adaptive Sliding Mode Control

SMC consider uncertainties and robustness as a part of design process. It is also

known as variable structure control on account of switching nature of control

[100]. The objective of SMC is to find the control law expression in terms of

the systems state 𝑥 such that 𝑥 𝑥𝑑 asymptotically and 𝑒 = 𝑥 − 𝑥𝑑

approaches to zero at an exponential rate. This is done with the help of a sliding

surface. Adaptive sliding mode control (ASMC) [101] is dynamic adaptation

within a sliding mode and is based on the purported equivalent control, which

is discovered through direct observations of the output of a first-order low-pass

filter with a discontinuous control that has a particularly modified magnitude

value as its input. In [101], the authors have illustrated the design of ASMC for

robotic manipulators. The schematic of the proposed ASMC is presented and

shown in Figure 3.6

Figure 3.6 Block Diagram of the adaptive SMC controller

Consider the dynamic of n link robotic manipulator is given as

 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝜏 (3.23)

where 𝑞, �̇�, �̈� ∈ ℝ𝑛 are angle, velocity and acceleration of joints respectively.

𝑀(𝑞) is the positive definitive inertia or mass matrix, 𝐶(𝑞, �̇�) is the centripetal

coriolis matrix and 𝐺(𝑞) is the gravitational force and 𝜏 is the applied torque to

the robot manipulator. In the design of a robust control system parameter are

38

written such that it contains a nominal value and contains parameter

uncertainties or tolerance factor.

The mass matrix can be expressed as

 𝑀(𝑞) = 𝑀0(𝑞) + 𝛥𝑀(𝑞) (3.24)

 𝐶(𝑞) = 𝐶0(𝑞) + 𝛥𝐶(𝑞) (3.25)

 𝐺(𝑞) = 𝐺0(𝑞) + 𝛥𝐺(𝑞) (3.26)

Where 𝑀0(𝑞) is the nominal value and 𝛥𝑀(𝑞) is the parameter uncertainties or

tolerance factor, means if 𝛥𝑀(𝑞) is given ±0.5% then mass value can vary

from 99.5 to 100.5 respectively. The higher the parameter uncertainties

percentage, the more robust the system will be. Similarly, 𝛥𝐶(𝑞) and 𝛥𝐺(𝑞)

are the coriolis and gravitational parameter uncertainties factor. Mostly in

Robust control one must deal with disturbances (input and output disturbances)

so input can be bifurcated in to control law and disturbances.

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝑢 + 𝑑𝑖(𝑡) (3.27)

Assume that disturbances 𝑑𝑖(𝑡) are bounded in nature. The eq (1) can be

written in the following form

 𝑀0(𝑞)�̈� + 𝐶0(𝑞, �̇�)�̇� + 𝐺0(𝑞) = 𝑢 + 𝜂𝑖(𝑡) (3.28)

Where 𝜂𝑖(𝑡) is defined as

 𝜂𝑖(𝑡) = −𝛥𝑀(𝑞) − 𝛥𝐶(𝑞) − 𝛥𝐺(𝑞) + 𝑑𝑖(𝑡) (3.29)

Assumption 1: Mass matrix 𝑀(𝑞)�̈� and coriolis matrix 𝐶(𝑞, �̇�)�̇�are bounded in

nature. Their derivatives are also bounded.

Assumption 2: Disturbance 𝑑𝑖(𝑡) is bounded and continuous differentiable.

The robotic manipulator’s trajectory tracking control can be calculated as

follows. Define the error of trajectory tracking 𝑒 = 𝑞 − 𝑞𝑑, where 𝑞𝑑is the

reference trajectory. Main objective is to obtain the control law 𝑢 such that

output trajectory follows the reference trajectory.

Consider the surface 𝑆 = 𝑒1 + 𝐾𝑒
𝑏

𝑎, where 𝑒1 = �̇� − �̇�𝑑, 𝐾 >0, 𝑎, 𝑏 are the odd

integrers.

The dynamic error corresponding to eq. (3.27) is

{
�̇� = 𝑒1

�̇�1 = −�̈�𝑑 − 𝑀0(𝑞)−1(𝐶0 + 𝐺0) + 𝑀0(𝑞)−1𝑢 + 𝑀0(𝑞)−1𝜂𝑖(𝑡)
 (3.30)

39

The equivalent control is the sum of high-frequency control. Robust control

primarily deals with low-frequency and adaptive high-frequency conditions [6].

Overall controller will be the sum of low frequency controller and high

frequency controller, shown as 𝑢 = 𝑢𝑙𝑓 + 𝑢ℎ𝑓. The representation of the

equivalent control can be found out with or without disturbances and

uncertainties.

 𝑢𝑙𝑓 = 𝑀0(𝑞)(�̈�𝑑 −
𝑏

𝑎
𝐾 {𝑒

𝑏

𝑎
−1} + (𝐶0 + 𝐺0) (3.31)

 𝑢ℎ𝑓 = −
(𝑆𝑇𝑀0(𝑞)−1)𝑇

∥𝑆𝑇𝑀0(𝑞)−1∥2 [∥ 𝑆 ∥∥ 𝑀0(𝑞)−1 ∥] (3.32)

The nominal value of 𝑚1 = 0.3 and 𝑚2 = 1.2 are respectively and suppose the

uncertainty of ±10 %.The other system parameter are 𝐿1 = 1 , 𝐿2 = 0.8, 𝐽1 =

𝐽2 = 5 𝑘𝑔.𝑚. The following two trajectories has been chosen for desired

angular position

 𝑞𝑑1 = 1.26 −
8

5
𝑒𝑥𝑝(− 𝑡) +

8

20
𝑒𝑥𝑝(− 5𝑡) (3.33)

 𝑞𝑑2 = 1.5 −
8

5
𝑒𝑥𝑝(− 𝑡) +

8

20
𝑒𝑥𝑝(− 5𝑡) (3.34)

Figure 3.7 Error of link 1

Figure 3.7 and Figure 3.8 show the error value for both links and Figure 3.9 and

Figure 3.10 shows the tracking error for both links. It is clear from the figures

40

that the proposed controller can track the reference trajectory. The initial

deviations from the reference trajectory have been handled well by the proposed

controller.

Figure 3.8 Error of the link 2

 Figure 3.9 Tracking error of the first joint with ASMC

41

 Figure 3.10 Tracking error of the second joint with ASMC

3.5 Stability Analysis

For nonlinear control one of the most widely used techniques for stability

analysis is the Lyapunov stability criterion which is known as the Lyapunov

theorem. Lyapunov stability theory is widely used in control theory, robotics,

and other fields of engineering to analyze and design control systems. It

provides a powerful tool for ensuring the stability and performance of complex

systems. This stability criterion utilizes the positive or negative definite and

semi-definite properties of the functions. A function 𝑉(𝑥) can be characterized

as positive definite (PD), positive semidefinite (PSD), negative definite (ND),

and negative semidefinite (NSD) if it satisfies the following properties.

If 𝑉(0) = 0, and 𝑉(𝑥) > 0 for 𝑥 ≠ 0, then function is PD.

If 𝑉(0) = 0, and 𝑉(𝑥) ≥ 0 for 𝑥 ≠ 0, then function is PSD.

If 𝑉(0) = 0, and 𝑉(𝑥) < 0 for 𝑥 ≠ 0, then function is ND.

If 𝑉(0) = 0, and 𝑉(𝑥) ≤ 0 for 𝑥 ≠ 0, then function is NSD.

According to the Lyapunov’s theorem, for 𝑥 = 0 an equilibrium point for a

dynamic system �̇� = 𝑔(𝑥) , 𝐷 ∈ 𝑅𝑛 is the domain consisting of equilibrium

point, a positive definitive Lyapunov function 𝑉:𝐷 → 𝑅 a constantly

differentiable function is assumed such that 𝑉(0) = 0, and 𝑉(𝑥) > 0 for 𝑥 ≠

42

0 , derivative of 𝑉, �̇�(𝑥) < 0 has to be negative definite then system would be

stable [103], For �̇�(𝑥) > 0 𝑜𝑟 �̇�(𝑥) ≥ 0 the system will be unstable.

For analyzing the stability following Lyapunov function has been considered.

 𝑉(𝑟, 𝜃) =
1

2
𝑚𝑟2 +

1

2
𝜃𝑇𝛤−1𝜃 (3.35)

Where 𝑟 = �̇� + 𝛼𝑒 and 𝛤is positive diagonal matrix.

�̇�(𝑟, 𝜃) = 𝑟(𝑚�̈� + 𝐶�̇� + 𝐺𝑞 + 𝛼𝑚�̇� − 𝜏) +
1

2
�̇�𝑇𝛤−1𝜃 +

1

2
𝜃𝑇𝛤−1�̇� (3.36)

 �̇�(𝑟, 𝜃) = 𝑟(𝑃𝑇 𝜃 − 𝜏) + 𝜃𝑇𝛤−1�̇� (3.37)

Where 𝑃𝑇𝜃 = 𝑚�̈� + 𝐶�̇� + 𝐺𝑞 + 𝛼𝑚�̇�

 �̇�(𝑟, 𝜃) = 𝑟(𝑃𝑇 𝜃 − 𝜏) − 𝜃𝑇𝛤−1�̇�,�̇� = −�̇� (3.38)

Next is to design 𝜏 = 𝑃𝑇 �̂� + 𝑘𝑟, �̇� = 𝛤𝑃𝑟

then �̇�(𝑟) = −𝑘𝑟2, which is negative semi definitive. The negative semi-

definite derivative of the Lyapunov function validates the stability of the

proposed controller.

43

3.6 Extremum Seeking Control (ESC)

With the advent of technology robotic systems have gained much popularity

and have been employed in many industrial applications. Robotic systems

provide ease and comfort to human lives by embedding a certain amount of

autonomy. Because of the large applications in industry effective control

methods are extremely important. Researchers are continuously exploring ways

to control these robotic systems and provide autonomous solutions for

performing industrial tasks. ESC [104] is a control strategy that tracks the

varying performance function. It refers to monitoring the varying maximum or

minimum of a performance function. Ariyur, K. B., & Krstic, M. (2003)

presents the principles and real-time optimization using ESC [105]. ESC is a

local optimizer and changes in the system dynamics are faster than the

perturbations. Figure 3.11 describes the ESC method for robotic manipulator,

the cost function or performance function is used to design the control law. It is

an equation-free adaptive control approach that adapts to parameter changes. It

is an optimization technique in which a sinusoidal perturbation is added to the

control input u. Based on the control law, this method provides the optimum

value of the objective function. To perform various industrial tasks robotic

manipulator has to track the optimum position. ESC tracks that optimum value.

Figure 3.11 Block diagram of ESC

In [106], the authors have described each of these ESC techniques by

performing a comparison and robustness analysis of each of the ESC

techniques. Authors characterized these techniques as sliding mode ESC, neural

network-based ESC, approximation-based ESC, and adaptive ESC. Robotic

44

systems have high nonlinearities, uncertain dynamics, and high disturbance,

perturbation-based ESC gives robust trajectory performance. In conclusion, the

authors suggested the use of approximation-based ESC when noise is not much

effective, neural network ESC is preferred in the presence of significant noise

while perturbation-based ESC is much more effective when a high level of noise

and uncertain dynamic effects are present. Thus, perturbation-based ESC is

found to be the most robust. ESC techniques are classified as shown in Figure

3.12

Figure 3.12 Classification of ESC Techniques

Malek, H., & Chen, Y. (2016) [107] proposed a novel fractional order ESC that

improved the convergence, robustness, and performance by incorporating

fractional calculus in ESC. Simulation and experimental analysis validate the

proposed scheme and show better performance as compared to the classic

extremum-seeking algorithm. ESC provides a robust and stable response. In

[108], the authors performed a stability analysis of ESC and proved the stability

of ESC by averaging method and singular perturbation analysis. Further in

[109], the authors suggested inclusion of a dynamic compensation that resulted

in improvement in the performance of ESC and enhanced stability. Researchers

are continuously finding ways to improve the ESC. In [110], the authors

designed a novel fast ESC to improve the static and dynamic performance of

ESC without any steady state oscillations. ESC is suitable for the system’s

disturbances and variations in the parameters. ESCs have applications in the

45

systems that have disturbances and variations in the parameters over time. ESCs

find applications in areas like process control [111], Renewable energy [112],

automotive industry [113], and robotic systems.

3.6.1 Design of ESC for robotic manipulator

Robotic manipulators being exceedingly nonlinear, uncertain, and MIMO

systems, two separate ESCs using two different objective functions have been

designed for two different links. A cubic polynomial reference trajectory has

been considered, having optimum values of π/4 and π/6 respectively. 𝐽1 and 𝐽2

are the objective functions used to track the optimum value of trajectories of

both links.

 𝐽1 = (𝑝𝑖/4) − (0.89 − 𝑢)^2 + 𝐶 (3.39)

 𝐽2 = (𝑝𝑖/6) − (0.72 − 𝑢)^2 + 𝐶 (3.40)

𝑢 is a control input, a sinusoidal perturbation is introduced to this. 𝐶 is a constant

term. Figure 3.13 shows the reference trajectory considered for tracking and

Figure 3.14 presents the output of the ESC designed for both links.

Figure 3.13 Polynomial Reference trajectory

46

Figure 3.14 Output of ESC

Figure 3.15 Optimum value tracking of the reference trajectory

47

Figure 3.16 Optimum value tracking of the reference trajectory

Figure 3.15 and Figure 3.16 show the optimum value trajectory tracking for

both the links, where both the objective functions have been able to track the

optimum value of trajectories. It is evident from both figures that the designed

controller is able to seek the optimum value in the reference trajectories.

Figure 3.17 SIMULINK model of ESC for trajectory control of robotic

manipulator.

The Simulink model of the ESC has been shown in Figure 3.17. The polynomial

trajectory as shown in Figure 3.13 has been given as a reference. A sinusoidal

perturbation has been included in the control law, this changes the control law

48

and estimates the best input. Two different objective functions have been

incorporated each on the different links of a robotic manipulator. The output of

the proposed controller shows tracking of the optimal point of given reference

trajectory.

Robotic manipulators have various industrial applications that require tracking

of optimum value of the desired trajectory. Because of the complex and

uncertain behaviour of the robotic system, it is difficult to track the optimum

value in such applications. ESC can track the optimum point trajectory

satisfactorily.

49

Chapter 4

Optimization and statistical analysis of control techniques for

linearized model

4.1 Introduction

Metaheuristic algorithms are nature-inspired methods that find the best possible

solution (optimum value) to any challenging problem. Mirjalili et al. [59] presented

optimization algorithms inspired from nature to solve complex problems like

trajectory control of robotic manipulators. The trajectory tracking has been

achieved using control schemes like PID and FOPID. To find the optimal gains of

these control techniques, the following algorithms have been implemented. The

fitness function or cost function is the performance indices in the terms of the error

values of the achieved trajectory. The metaheuristic algorithms implemented on

PID and FOPID controllers provide the optimum value of the fitness function of a

linear two-link robotic manipulator.

i. Grey wolf optimizer (GWO) algorithm

ii. Whale optimization (WOA) algorithm

iii. Moth flame Optimization (MFO) algorithm

iv. Multi-verse optimization (MVO) algorithm

Each of these algorithms is inspired by swarm intelligence and nature, these

algorithms can be modeled and expressed in a mathematical approach [60]. The

description and mathematical approach for these algorithms and their

implementation in tracking the trajectory of a linearized two-link manipulator has

been presented in the next sections.

50

4.2 Grey Wolf Optimization (GWO)

Mirjalili et al. (2014) [114] projected an innovative stochastic swarm intelligence

algorithm named GWO. The algorithm is inspired from the hunting behavior and

social hierarchy of grey wolves and finds wide application to optimize complex

optimization problems. Grey wolves are also referred to as idealist hearths

belonging to the family of Canidae mostly lives in regions of north America. Grey

wolves communicate through howling, barking and through different body

language specially to build social hierarchy of packs. There are four levels in the

hierarchy of wolves which are alpha (α) the leaders, beta (β) coordinating

subordinates, delta (δ), omega (ω) as shown in Figure 4.1. Alpha wolves are the

leaders of the pack and dictate to other wolves. Beta wolves are subordinate of

alpha and guide the other wolves. Delta wolves stand third in hierarchy but

dominates the omega wolves. These wolves include scouts, hunters, sentinels and

are responsible for maintaining the safety of the entire pack. Omega wolves are last

in the hierarchy and follow all the other dominant wolves. All four categories of

grey wolves live in packs of 5 to 15 and show an important behavior of group

hunting. These wolves first track and chase the prey, once the prey is chased then

these packs of wolves enfold the prey and harass it until the prey is tired and finally,

they attack the prey. The flow chart of GWO has presented in Figure 4.2

The mathematical approach of GWO is illustrated as:

Step 1: The position of grey wolves (search agents) initialized arbitrarily in the

search space:

 𝑌𝑖 = (𝑦𝑖 …………… . 𝑦𝑛) (4.1)

where, n signifies the space dimension.

Step 2: The coefficients a, A, and C are initialized and expressed as:

 𝐴 = 2 ∗ 𝑎 ∗ 𝑟1 − 𝑎 (4.2)

 𝐶 = 2 ∗ 𝑟2 (4.3)

where, 𝑟1, 𝑟2 represents the random numbers having range [0,1] and a is a constant

decreasing from a value of 2 to 0 over the iterations.

51

Step 3: The fitness of all grey wolves is evaluated, depending on the problem the

position of first three best grey wolves is termed as 𝑌𝛼, 𝑌𝛽, 𝑌𝛿 respectively. The

position of rest of the grey wolves are 𝑌𝜔.

Step 4: Upgrade the position of each grey wolves towards the best grey wolves (𝑌𝛼,

𝑌𝛽, 𝑌𝛿) based on the following equations:

 𝑋𝛼 = |𝐶1 ∗ 𝑌𝛼 − 𝑌|, 𝑋𝛽 = |𝐶2 ∗ 𝑌𝛽 − 𝑌|, 𝑋𝛿 = |𝐶3 ∗ 𝑌𝛿 − 𝑌| (4.4)

 𝑌1 = 𝑌𝛼 − 𝐴1 ∗ (𝐷𝛼), 𝑌2 = 𝑌𝛽 − 𝐴2 ∗ (𝐷𝛽), 𝑌3 = 𝑌𝛿 − 𝐴3 ∗ (𝐷𝛿) (4.5)

 𝑌(𝑘 + 1) =
𝑌1+𝑌2+𝑌3

3
 (4.6)

where, 𝐴1, 𝐴2, 𝐴3 and 𝐶1, 𝐶2, 𝐶3 are the coefficients of 𝛼, 𝛽, 𝛿 wolves and k denote

the current iteration.

Step 5: Update the coefficient vectors A and C using eq. (4.2) and eq. (4.3).

Step 6: Initialize the position of grey wolves again that go above the defined space.

Figure 4.1 Description of GWO Algorithm

52

Figure 4.2 Flow diagram of GWO algorithm

4.3 Whale Optimization Algorithm (WOA)

Mirjalili et al. (2016) [115] proposed novel stochastic optimization algorithm

named WOA. Humpback whales are the species of baleen whale and is one of the

intelligent species having emotions. The most unique feature of these whales are

that they are the biggest mammal in the world with adult length around 39-53 feet

and weight 25-30 metric tons. Spindle cells named after their spindle-shaped bodies

occur in brain are responsible for the social, intelligent and smart behavior of

whales. Humpback whales have a most diverse hunting behavior, and the main

source of their food is small fish. Whales hunt their prey with bubble-net feeding

technique in which a group of whales encircle their prey and blows bubbles around

them. In upward-spiral whale moves 12 meter down and form bubble in a spiral

pattern towards the prey and dip up towards the surface while in double loop whale

move around the prey in three different fashions, i.e., coral loop, lobtail, and capture

loop. The algorithm works in three phases, i.e., searching, encircling, and hunting

prey. When swimming around their prey, humpback whales can maneuver in a

spiraling pattern or along a path that is gradually getting smaller and a probability

factor p switches either of the two movement. Exploration and exploitation need to

Start

Initialize the random position of grey
wolves (search agents)

Initialize the coefficients A and C

Evaluate the cost of each search agent and
find first three best agent (𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿)

Update the position of each search agent
towards best search agent

Update the coefficient vectors A and C Reinitialize the position of search agents
that go beyond the search space

Stop

Termination
Criteria Achieved

𝑋𝛼 represents the best
optimal solution

No

Yes

53

be kept in balance as shown in Figure 4.3 through |𝐶̅|vector decreasing from 2 to 0

over the iterations. In the initial phase when |𝐶̅| ≥ 1 then the whales explore around

the random prey while as |𝐶̅|<1 then whale exploits the search space and swim

around the best prey. The flow diagram of WOA is shown in Figure 4.4.

The mathematical approach inspired from spiral bubble-net feeding movement of

whales around prey is illustrated as:

Step 1: Initiate the population of whales (search agents) arbitrarily within definite

space:

 𝑌𝑖 = (𝑦𝑖 …………… . 𝑦𝑛) (4.7)

where, n signifies the space dimension.

Step 2: Evaluate the cost of each whale and depending on the problem

(minimization or maximization) find the position of best whale (Y*).

Step 3: Modify the constants G, H using the following equations:

 𝐺 = 2 ∗ 𝑏 ∗ 𝑟 − 𝑏 (4.8)

 𝐻 = 2 ∗ 𝑟 (4.9)

where, r is the random number having range [0,1], b is iteratively decreasing from

2 to 0 and p is a random parameter lying between [0, 1].

Step 4: If p<0.5 and |H|≥1, random position of whale (𝑌𝑟𝑎𝑛𝑑) is selected in search

space and position of whale is updated around it using the following equations:

 𝐷 = |𝐻 ∗ 𝑌𝑟𝑎𝑛𝑑 − 𝑌| (4.10)

 𝑌(𝑡 + 1) = 𝑌𝑟𝑎𝑛𝑑 − 𝐺 ∗ 𝐷 (4.11)

else if, p<0.5 and |G|<1, then apprise the position of whale around the best search

agent (𝑋∗) using the following eq. (4.7-4.8).

 𝐷 = |𝐻 ∗ 𝑌∗ − 𝑌| (4.12)

 𝑌(𝑡 + 1) = 𝑌∗ − 𝐺 ∗ 𝐷 (4.13)

else, p>0.5, then update the position of whale using the following equation:

 𝑌(𝑡 + 1) = 𝐷′ ∙ 𝑒𝑑𝑙 ∙ cos(2𝜋𝑙) + 𝑌∗(𝑡) (4.14)

where, 𝐷′ = |𝑌∗(𝑡) − 𝑌(𝑡)| is the distance between the whale and best searched

prey (𝑌∗(𝑡)), is the constant d maintains the logarithmic spiral shape and l is the

54

arbitrary number confined in the range [-1,1], ∙ is element by element

multiplication.

Figure 4.3 Description of WOA

Figure 4.4 Flow diagram of WOA

Start

Initialize the random position of whales (search
agents)

Update the constant parameters a, A, C, p,
l

Reinitialize the position of search agents that
go beyond the search space

Update the position of search agents
in spiral fashion

Stop

Evaluate the cost of each search agent and find the position of best search agent (X*)

 if p<0.5

 if |A|<1

 if |𝐴| ≥ 1

Yes

No

No

Yes Update the position of search agents
across random search agent

Update the position of search agents
across best search agent

Yes

Termination
Criteria Achieved

X* represents the best
optimal solution Yes

No

55

4.4 Moth Flame Optimization (MFO)

Mirjalili et al. (2015) [116] proposed a novel population-based nature-inspired

swarm intelligence algorithm named MFO. Moths are a paraphyletic group of

insects with characteristics resembling those of butterflies. Around 160,000 species

of moths, including nocturnal, crepuscular, and diurnal species, are known to occur

in nature. Some moth larvae dig burrows in the earth and dwell there until they are

adults, while others grow up in cocoons. By maintaining a constant angle with

respect to the moon, the moth travels over a great distance in a straight line.

However, the moth eventually converges to it after being entangled in a swirling

path across the artificial lights.

Figure 4.5 illustrates how the MFO algorithm simulates the movement of moths in

a logarithmic spiral way across the flame to get the best solution. The search space

is initially filled with a random population of moths, and their positions are spirally

updated with regard to the flame while keeping in mind that the moth movement

shouldn't go outside the search space. Moths can be thought to move in a hyper

ellipse across the flame in every direction. The moth’s movement in the direction

of the flame causes the algorithm to become locked in local optimum and the

position of each moth is updated in relation to its corresponding flame. This causes

each moth to travel around diverse flames and lowers the likelihood of local optima

stasis.

Figure 4.5 Description of MFO algorithm

56

The position of flame is also modified during each iteration with regard to the

optimal answer, which improves the algorithm's exploration capacity. The moth’s

movement in several locations within the confined search space improves the level

of exploration but reduces the exploitation capability. Exploration and exploitation

need to be balanced in each optimization technique. To increase the algorithm's

exploitation capabilities, an adaptive approach for estimating the number of flames

is provided. The number of flames is reduced adaptively throughout an iteration

ensuring that moths update their position with regard to the best updated flame in

the preceding iterations. The flow diagram of MFO is shown in Figure 4.6

 Figure 4.6 Flow diagram of MFO algorithm

The mathematical approach of MFO is illustrated as:

Step 1: Initializing the population of the moths (search agents) arbitrarily in the

definite space as:

 𝑃 = [

𝑝1,1
𝑝1,2 … … 𝑝1,𝑙

𝑝2,1
𝑝2,2 … … 𝑝2,𝑙

𝑝𝑚,1
𝑝𝑛,2 … … 𝑝𝑛,𝑙

] (4.15)

Start

Evaluate the cost of moths and flames

Reinitialize the position of moths
that go beyond the search space

Stop

Termination
Criteria Achieved

Update the position of each moths
with respect to their corresponding

flame in a spiral fashion

Update the number of flames

Sort moths and flames based on their
cost value

Yes

No

Position of best moth
represent global optimal solution

Initialize the random position of
moths and flames in the search space

57

where, m is the moth numbers and l are the dimensions.

Step 2: Every individual moth’s position vector needs to be placed in in the cost

function represented by OP to calculate the cost of moth.

 𝑂𝑃 =

[

𝑂𝑃1

𝑂𝑃2.
.

𝑂𝑃𝑛]

 (4.16)

Step 3: Initialize the arbitrary matrix of flames identical to moths as follows:

 𝐸 = [

𝑒1,1
𝑒1,2 … … 𝑒1,𝑙

𝑒2,1
𝑒2,2 … … 𝑒2,𝑙

𝑒𝑚,1
𝑒𝑛,2 … … 𝑒𝑛,𝑙

] (4.17)

Step 4: Place the flame's location vector in the cost function to calculate the cost of

each flame and is expressed as:

 𝑂𝐸 =

[

𝑂𝐸1

𝑂𝐸2.
.

𝑂𝐸𝑚]

 (4.18)

Step 5: Sorting the moths and flames according to their cost.

Step 6: Use the following equation to update the number of flames:

 𝑓𝑙𝑎𝑚𝑒 𝑛𝑜.= 𝑟𝑜𝑢𝑛𝑑 (𝑅 − 𝑗 ∗
𝑅−1

𝑇
) (4.19)

where T is the maximum iteration, j denotes the current iteration, and R represents

the maximum flames.

Step 7: Update the position of every individual moth according to the corresponding

flame in a spiral fashion as:

 𝑃𝑖 = 𝑆(𝑃𝑖, 𝐸𝑗) (4.20)

where, Pi represents the i-th moth and Ej represents the j-th flame and S is the spiral

function and a logarithmic function that is defined as:

 𝑆(𝑃𝑖, 𝐸𝑗) = 𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐸𝑗 (4.21)

58

where Di is the distance between the i-th moth and the j-th flame, b is a constant

that determines the form of the logarithmic spiral, and t is a random value between

[-1, 1]

 𝐷𝑖 = |𝐸𝑗 − 𝑃𝑖| (4.22)

Step 8: Identify the moths leaving the search space and reposition them within the

limits.

Step 9: The algorithm terminates when the minimal error stopping criteria or

maximum number of iterations is reached. Alternatively, repeat steps (2) to (9).

Step 10: The best moth location reflects the universal ideal solution.

4.5 Multi Verse Optimization (MVO)

Mirjalili et-al. (2015) [117] presented MVO a nature-inspired stochastic

optimization technique. MVO algorithm mathematically models the multi-verse

theory of physics. As per the theory, there are multiple big bangs, and each

individual big bang creates a new universe. Thus, there exists more than one

universe along with the actual universe. The three main components of MVO

algorithm are white, black, and worm holes. White holes are formed through the

collision between parallel universes, black holes work differently with respect to

white hole and absorbs most of the things with quite high gravitational force while

wormholes join distinct parts of the universe. Multi-verse theory states that

different universes interact with white, black and wormholes to attain stability. It

has been observed that each universe has varying rise rates which control its

extension throughout space. Traditionally, all optimization algorithms are governed

through their exploration and exploitation capability. MVO utilizes white and black

holes to better explore the search space while wormholes aid to exploit the search

space. The algorithm initializes by creating a random population in the search space

and over the course of iterations the objects in universe with high rate of inflation

moves to the universe having low inflation rate through white/black holes.

Although, all universe objects experiences teleportation via wormholes in direction

59

of best universe. Figure 4.7 shows the flow chart of MVO algorithm. The following

steps mathematical approach of MVO algorithm is illustrated as follows:

Step 1: Initialize the arbitrary population of universe (U) in the search space:

 𝑈 = [

𝑦1
1 𝑦1

2 . 𝑦1
𝑑

𝑦2
1 𝑦2

2 . 𝑦2
𝑑

.
𝑦𝑛

1
.

𝑦𝑛
2

. .

. 𝑦𝑛
𝑑

] (4.23)

where, n signifies the number of universe and d denotes the parameters.

Step 2: Initialize the parameters wormhole existence probability (WER) and

travelling distance rate (TDR).

Step 3: Sort the universe (SU) and evaluate the inflation rate (fitness) of all the

universe and based on the inflation rate choose the best universe.

Step 4: Normalize the inflation rate (NI) of the space.

Step 5: Update the parameters WER and TDR with the following set of equations:

 𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∗ (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝐿
) (4.24)

 𝑇𝐷𝑅 = 1 −
𝑙1 𝑝⁄

𝐿1 𝑝⁄ (4.25)

where, min and max are the constant parameters, l and L are the current iteration

and the maximum iterations, p is a constant which defines the exploitation accuracy

of the algorithm.

Step 6: Use a roulette wheel selection method to move objects from a high inflation

rate universe to a low inflation rate universe.

Step 7: Transfer the objects from universe to best universe through wormhole

tunnels.

Step 8: Determine the universes that go beyond the definite search space and

reinitialize their positions.

Step 9: Repeat step 3 until the stopping criteria is assured.

Step 10: The position of best universe epitomizes the universal optimal solution.

60

Figure 4.7 Flow chart of MVO algorithm

4.6 Results and Discussions

All these metaheuristic techniques have been implemented to design PID and

FOPID controllers for the trajectory tracking of a two-link robotic manipulator. The

fixed step trajectory of step value 2 has been considered for tracking. A Weighted

sum of the integral absolute error IAE of both links has been considered as the

fitness function as shown in eq. (4.26)

 𝑓 = 𝑤1 ∗ ∫ 𝑒1(𝑡)𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑑𝑡 (4.26)

𝑤1 and 𝑤2 are the weights assigned to the IAE of both links with the values of 0.5

each and 𝑒 = 𝜃 − 𝜃𝑑 , the difference between the actual and reference or desired

trajectory. These metaheuristic algorithms are stochastic in nature they may yield

different results for each run, thus statistical analysis is required. The statistical

analysis has been performed by running each algorithm 10 times.

Some parameters need to be considered for the implementation of the above-

mentioned metaheuristic algorithms to optimize the control techniques; these

parameters are listed in table 4.1. The upper and lower bounds have been defined.

Start

Initialize the random population of
universe (U)

Initialize the parameters WER and TDR

Sort the universe and evaluate the inflation rate
(fitness) of universe and choose the best

universe

Normalize the inflation rate of the universe

Reinitialize the universes
that go beyond the search space

Stop

Termination
Criteria Achieved

Position of best universe
represents the global optimal solution

No

Yes

Update the parameters WER and TDR

Transfer the objects through white/black
and wormhole tunnel

61

Dimensions for PID are 6 and for FOPID it has been taken as 8. In PID controller

we need to optimize the controller gains (KP1, KI1, KD1 and KP2, KI2, KD2) and in

FOPID the controller gains (KP1, KI1, KD1, KP2, KI2, KD2, µ, λ) thus have dimensions

6 and 8 respectively. The number of search agents has been considered as 30 and

the number of iterations is 100.

Table 4.1 Parameters for metaheuristic algorithms

S.

No

Algorithm

parameters

 PID Values FOPID Values (𝜆𝑖, µ𝑖)

1 Dimensions 6 8

2 Upper Bounds [500,300,200,500,300,200] [500,300,200,500,300,200,1,1]

3 Lower Bounds [0.5,0.5,0.5,0.5,0.5,0.5] [0.5,0.5,0.5,0.5,0.5,0.5,0,0]

4 No of search

agent

30 30

5 No of iterations 100 100

6 No of runs 10 10

Every run returns the optimum value of the controller gains with minimum fitness

function. For these values, the lowest fitness value is considered as the optimum

solution. Table 4.2 presents the gains of the PID controller for both links, the error

value for each link, and the optimum fitness value. Statistical analysis has been

carried out using statistical parameters like minimum, maximum, mean, median,

and standard deviation of fitness value. Table 4.3 presents this statistical analysis

expressing the values of these parameters. It is clear from these values the MFO

has shown zero standard deviation. The standard deviation shown by MVO and

GWO is 0.0001. WOA has shown a high standard deviation of 0.00165. Thus, the

performance of MFO is found to be superior as compared to other algorithms.

62

Table 4.2. PID Controller gains, error values and objective function values for

various algorithms

S.

No.

Algorithm Link 1 PID

controller gains

Link 2 PID

controller gains

IAE IAE1 Objectiv

e

function

1 GWO [499.9380,

63.5886, 30.8274]

[500, 296.0716,

81.8123]

0.1671 0.3771 0.2721

2 WOA [500, 65.5025,

30.1539]

[500, 300,

80.7489]

0.1673 0.3772 0.2723

3 MFO [499.9877,

64.8214, 30.2722]

[499.9898, 300,

80.9017]

0.1671 0.3770 0.2721

4 MVO [500, 65.0899,

30.1600]

[499.5655, 300,

80.7833]

0.1671 0.3773 0.2722

Table 4.3 Statistical parameters for PID Controller

S.

No.

Algorithm Minimum Maximum Mean Median Standard Deviation

1 GWO 0.2721 0.2724 0.2722 0.2722 0.0001

2 WOA 0.2723 0.3185 0.2914 0.2930 0.0165

3 MFO 0.2721 0.2721 0.2721 0.2721 0.0000

4 MVO 0.2722 0.2724 0.2723 0.2723 0.0001

FOPID provides more design flexibility by integrating fraction operators in

derivative and control mode. Therefore, each FOPID has five gains to optimize

using metaheuristic algorithms. Two different FOPID controllers have been

designed for tracking the trajectory manipulator because of MIMO dynamics.

Table 4.4 presents the gains of FOPID controller for both links, the error value for

each link, fractional term values, and the optimum fitness value.

63

Table 4.4 FOPID Controller gains, error values and objective function values for

various algorithms.

S.

No.

Algorithm Link 1

FOPID

controller

gains

Link 2

FOPID

controller

gains

[𝜆𝑖, µ𝑖] IAE IAE1 Objective

function

value

1 GWO [8.4380, 300,

134.6961]

[492.2880,

300, 200]

[1,1] 0.02846 0.3213 0.1749

2 WOA [222.7478,

300, 200]

[500,

300,200]

[1,0.99

99]

0.03593 0.3199 0.1779

3 MFO [2.1608,

299.9985,

133.6903]

[499.8116,

300, 200]

[1,1] 0.02657 0.3207 0.1736

4 MVO [0.5, 300,

132.8533]

[499.9307,

300,

199.7294]

[1,0.99

96]

0.02672 0.3209 0.1738

In FOPID the Statistical analysis has been carried out using the statistical

parameters like minimum, maximum, mean, median, and standard deviation of the

error values. Table 4.5 presents this statistical analysis expressing the values of

these parameters

Table 4.5 Statistical parameters for FOPID Controller

S.

No.

Algorithm Minimum Maximum Mean Median Standard

Deviation

1 GWO 0.1749 0.1793 0.1787 0.1791 0.0013

2 WOA 0.1779 0.1796 0.1794 0.1796 0.0005

3 MFO 0.1736 0.1784 0.1767 0.1779 0.0020

4 MVO 0.1738 0.1792 0.1770 0.1788 0.0025

64

It is clear from these values the MFO has given the lowest fitness value and WOA

has returned the highest fitness value. Considering the fitness value, the

performance of MFO is found to be superior as compared to other algorithms. A

non-parametric statistical test known as Friedman’s test has been performed to

evaluate the performance of these metaheuristic optimization algorithms [118].

Each of these algorithms has been assigned a Friedman ranking utilizing that final

ranking has been assigned [119]. Table 4.6 shows the Friedman ranking and final

ranking of every algorithm implemented on PID and FOPID controllers.

Table 4.6 Ranking of the metaheuristic algorithms on PID and FOPID controller

designed according to the Friedman test.

S.

No.

Algorithms PID Controller FOPID Controller

 Friedman

Ranking

Final

Ranking

 Friedman

Ranking

Final

Ranking

1 GWO 2.4 2 2.8 3

2 WOA 3.6 4 3.9 4

3 MFO 1 1 1.4 1

4 MVO 3 3 1.9 2

Figure 4.8 Friedman’s Ranking for PID controller

2.4
2

3.6
4

1 1

3 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Friedmann's Ranking Final Ranking

Ranks of Algorithms- PID Controller tuning

GWO WAO MFO MVO

65

Figure 4.9 Friedman’s Ranking for FOPID Controller

Figure 4.8 and Figure 4.9 present Friedman’s ranking of the metaheuristic

algorithms implemented in tuning the PID and FOPID controllers for tracking the

trajectory of a robotic manipulator. The obtained Friedman’s ranking has been

approximated and a final ranking has been assigned to each algorithm. It is evident

from these rankings that the algorithm MFO performs the best and algorithm WOA

performs the worst for both PID and FOPID control schemes. So MFO attains a

rank of 1 and WOA attains 4. The performance of GWO is superior to MVO in the

PID controller, thus GWO attains a rank of 2 and MVO achieves the rank of 3 as

shown in Figure 4.8. The performance of MVO is superior to GWO in the FOPID

controller; thus MVO attains a rank of 2 and GWO achieves the rank of 3 as shown

in Figure 4.9. These ranks are clearly indicative of the performance of the algorithm

on tuning the controllers to achieve the reference trajectory.

The convergence curve depicts the optimal cost function value achieved with the

iterations. Figure 4.10 shows the convergence curve of these implemented

metaheuristic algorithms for the PID control technique. Figure 4.11 shows the

2.8 3

3.9 4

1.4
1

1.9 2

0

1

2

3

4

5

Friedmann's Ranking Final Ranking

Ranks of Algorithms- FOPID Controller tuning

GWO WAO MFO MVO

66

convergence curve of these implemented metaheuristic algorithms for the FOPID

control technique.

 Figure 4.10 Convergence curve of the algorithms for PID controller

 Figure 4.11 Convergence curve of the algorithms for FOPID controller

In the PID controller convergence curve, the MFO converges to the lowest fitness

value while WOA converges to the highest fitness value, this signifies the best

67

performance of MFO and worst performance of WOA in the tracking the trajectory

of a robotic manipulator using metaheuristic algorithms based PID controller. In

the FOPID controller convergence curve, the MFO converges to the lowest fitness

value while WOA converges to the highest fitness value, but the performance of

WOA has been improved in comparison to PID control. This validates the best

performance of MFO and worst performance of WOA in the trajectory control of

robotic manipulators using metaheuristic algorithms based FOPID controller.

A fixed step of value 2 has been given as a reference to track the trajectories of both

links of a two-link robotic manipulator. Fast settling and no overshoots in the

trajectories have been the desired characteristics in the tracked trajectories of both

links. Figure 4.12 shows the trajectory control by the PID controller and FOPID

controller using GWO. This algorithm has tracked the reference trajectory in both

control schemes, but PID has shown overshoots. It is clear from the figures that

FOPID has shown a low error value in the positions of both the links as compared

to the PID controller and has completely reduced overshoot in link 2 and reduced

it in link 1.

 Figure 4.12 GWO tuned PID and FOPID controller response

68

Figure 4.13 depicts the trajectory control by the PID and FOPID controller using

WOA. For link 1 PID has shown more overshot as compared to GWO. The FOPID

has reduced the overshoots. WOA has been able to track the reference trajectory

but has shown a high fitness function value.

Figure 4.13 WOA tuned PID and FOPID controller response

Figure 4.14 shows the trajectory control by PID and FOPID controller using MFO

and Figure 4.15 presents the trajectory control by PID and FOPID controller using

MVO. The performance of these algorithms is better for FOPID as compared to

PID. The overshoots in the trajectory of the links of robotic manipulators have been

removed by the FOPID controller but the settling time is increased a bit for the

second link while link 1 is able to settle instantly. PID and FOPID controllers are

robust but gain setting for complex systems like robotic manipulator is challenging.

The use of metaheuristic algorithms felicitates this problem in the design of

efficient control. Considering the stochastic nature of such algorithms, different

runs have been taken for finding the optimum solution. FOPID has reduced the

error but increased the settling time of the angular position of the second link of the

robotic manipulator. So, there is a trade-off between the error value and settling

time for the angular displacement of link 2.

69

Figure 4.14 MFO tuned PID and FOPID controller response

Figure 4.15 MVO tuned PID and FOPID controller response

70

Chapter 5

Optimization and statistical analysis of control techniques for

nonlinear model

5.1 Introduction

The optimization algorithms have given more flexibility in the design of effective

control schemes to the researchers. These techniques help in optimizing the control

laws. Because of the stochastic nature of these algorithms statistical analysis is

required to assess the effectiveness of such algorithms. In this chapter the trajectory

tracking has been achieved using PID controller and following recent metaheuristic

algorithms have been employed to optimize the controller parameters providing a

minimum fitness function value.

 Arithmetic Optimization Algorithm (AOA)

 Atom Search optimization (ASO)

 Spotted Hyena Optimizer (SHO)

 Sooty Tern Optimization (STO)

Further, STO algorithms has been modified by combining it with PSO and a novel

hybrid algorithm STOPSO has been proposed to expand the exploitation capability

of STO. Each of these algorithms is inspired by a phenomenon existing in nature

like swarm intelligence, mathematical operators, and the atomic structure of

molecules. Taking this inspiration in consideration these algorithms can be

modeled and expressed in a mathematical approach [60]. The description and

mathematical approach for these algorithms and their implementation in tracking

the trajectory of a double-link robotic manipulator has been presented in the next

sections.

71

5.2 Arithmetic Optimization Algorithm (AOA)

Laith Abualigah et.al. (2021) [120] presented a novel optimization algorithm

named AOA inspired by fundamental operations in mathematics. It makes use of

mathematical operations like multiplication, division, addition, and subtraction's

distribution pattern. The utilization of different basic arithmetic operations in

unravelling the complicated arithmetic problems is the main inspiration of AOA. It

is implemented in three stages: Initialization phase: Each iteration results in the best

answer, starting with a collection of randomly initiated solutions. The fitness value

at the tth iteration is obtained using the mathematical optimizer function (MOA). In

the exploration phase the division (D) and multiplication (M) mathematical

operators search for the best answers. The fitness value is determined by the Math

Optimizer Probability (MOP). In the exploitation phase the addition (A) and

subtraction (S) mathematical operators exploit the solution for global optimum

answer. The flow chart of AOA has been shown in Figure 5.1.

Figure 5.1 Flow chart of AOA

Start

Initialize the AOA parameters 𝛼 and 𝜇

Initialize the solution positions randomly

Evaluate the fitness for each solution and choose
best solution

Update the position of each solution

Reinitialize the solutions
that go beyond the search space

Stop

Termination
Criteria Achieved

Return the best solution

No

Yes

Update the parameters MOA and MOP

Calculate the fitness of each solution

72

The mathematical modelling of AOA algorithm is outlined in the following steps.

Step 1: Initiate the AOA parameters α, µ, and the randomly generated candidate

solution (X) in the search space:

 𝑋 = [

𝑥1,1 𝑥1,2
. 𝑥1,𝑛

𝑥2,1 𝑥2,2
. 𝑥2,𝑛

𝑥𝑁,1

.
𝑥𝑁,2

. .
. 𝑥𝑁,𝑛

] (5.1)

where, n signifies the number of solutions.

Step 2: Appraise the fitness value of each function using the functions MOA and

MOP.

Step 3: Calculate and update the MOA function.

 𝑀𝑂𝐴(𝐶𝐼) = 𝑀𝑖𝑛 + 𝐶𝐼(
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝐼
) (5.2)

Where, 𝐶𝐼 is the running iteration, 𝑀𝐼 is the maximum iteration, 𝑀𝑎𝑥 and 𝑀𝑖𝑛 are

the maximum and minimum values of MOA function.

Step 4: Calculate and update the MOP function.

 𝑀𝑂𝑃(𝐶𝐼) = 1 − 𝐶𝐼(
𝐶𝐼

1
𝛼

𝑀𝐼

1
𝛼

) (5.3)

Where, 𝐶𝐼 is running t iteration, 𝑀𝐼 is maximum iteration, and α is a constant used

to exploit the solutions.

Step 5: Generate the random values of variables r1, r2, r3 in between [0, 1]. These

variables determine the exploration and exploitation phase.

if r1>MOA

The exploration takes place

if r2>0.5 then

(1) The mathematical divide operation D needs to be applied

 Implement rule 1 in eq. (5.4) to update ith solution

 else

(2) The mathematical multiplication operator M. is applied

 Implement rule 2 in eq. (5.4) to update ith solution

 end if

73

 else

The exploitation takes place

if r3>0.5 then

(1) The mathematical subtraction operator S is applied

 Implement rule 1 in eq. (5.5) to update ith solution

 else

(2) The mathematical addition operator A is applied

 Implement rule 2 in eq. (5.5) to update ith solution

 end if

 end if

end for

CI= CI+1

end while

Step 6: Update the solutions using the following set of equations:

𝑥𝑖,𝑗(𝐶𝐼 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (5.4)

𝑥𝑖,𝑗(𝐶𝐼 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) , 𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × µ + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (5.5)

Where the values 𝑈𝐵𝑗 and 𝐿𝐵𝑗 is the upper and lower bound value of the jth position.

Step 7: Reiterate step 6 to either the maximum iterations are reached, or closure

criteria is satisfied.

Step 8: The candidate’s best solution represents the global optimal solution.

74

5.3 Atom Search optimization (ASO)

Weiguo Zhao et.al. (2019) [121] proposed a novel, physics-based metaheuristic

algorithm ASO inspired by dynamics of basic molecular structure in atoms. ASO

begins the optimization process by producing a set of solutions randomly. During

each iteration the positions and velocities of each atoms including the best atom, is

updated. There are two forces that cause the atom’s acceleration. The first one is

L-J potential’s interaction that is the vector summation of the attraction and

repulsion forces between atoms. Second is the bond-length potential’s constraint

force that is defined as the difference in weighted positions between every atom

and the optimum atom. The entire updating and computation process is carried out

interactively up till a stopping criteria is fulfilled. The best atom’s fitness and

position represents the optimum value. An initial set of atoms solutions with their

velocities are produced at random in an ASO. According to its mass, each atom's

location within the search area points to a solution. As per the distance between

each atom in the population there is tendency of either attracting or repelling one

another, which will cause the lighter atoms to gravitate towards the heavier ones.

The flow chart of ASO has been shown in Figure 5.2.

 Figure 5.2. Flow chart of ASO

Start

Initialize the random set of atoms (X)

Initialize positions and velocities of atoms

Calculate the fitness value of atoms and
find best fitness

Determine the neighbor for each atom

Reinitialize the atoms
that go beyond the search space

Stop

Termination
Criteria Achieved

Best atom represents the global
optimal solution

No

Yes

Calculate the interaction and constraint force

Calculate acceleration, Update velocity and
position of the atom

75

The mathematical modelling of the ASO is outlined in the following steps.

Step 1: Initiate a random set of atoms solution (X) within the search space with

velocity v.

 𝑥𝑖 = (𝑥𝑖 …………… . 𝑥𝑛) (5.6)

Where n denotes the number of atoms.

Step 2: Evaluate the fitness value of each function using the following equations.

 𝐹𝑖𝑗(𝑡) = −ƞ(𝑡)[2 (ℎ𝑖𝑗(𝑡))
13

− (ℎ𝑖𝑗(𝑡))
7

] (5.7)

Where ƞ(𝑡), depth function that adjusts the attractive or repulsive force region,

defined as following.

 ƞ(𝑡) = 𝛼(1 −
𝑡−1

𝑇
)3𝑒

−20𝑡

𝑇 (5.8)

Where 𝛼 is the depth weight and T represents the maximum number of iterations

considered.

Step 3: Compare the fitness value obtained with 𝐹𝑖𝑡𝑏𝑒𝑠𝑡.

If 𝐹𝑖𝑡𝑖 < 𝐹𝑖𝑡𝑏𝑒𝑠𝑡 then

 𝐹𝑖𝑡𝑖 =𝐹𝑖𝑡𝑏𝑒𝑠𝑡

 𝑋𝑏𝑒𝑠𝑡 = 𝑋𝑖

 End if

Step 4: Calculate the mass equations and determine the neighbors using the

following equations.

 𝑀𝑖(𝑡) = 𝑒
−

𝐹𝑖𝑡𝑖−𝐹𝑖𝑡𝑏𝑒𝑠𝑡

𝐹𝑖𝑡𝑤𝑜𝑟𝑠𝑡−𝐹𝑖𝑡𝑏𝑒𝑠𝑡 (5.9)

 𝑚𝑖(𝑡) =
𝑀𝑖(𝑡)

∑ 𝑀𝑗(𝑡)
𝑁
𝑗=1

 (5.10)

 𝑃(𝑡) = 𝑁 − (𝑁 − 2)√
𝑡

𝑇
 (5.11)

Step 5: Calculate the forces (interaction and constraint) using the following

equations.

76

 𝐹𝑖(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝑗ԑ𝐾𝑏𝑒𝑠𝑡 𝐹𝑖𝑗(𝑡) (5.12)

 𝐺𝑑
𝑖(𝑡) = 𝛾(𝑡)(𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) (5.13)

 𝛾(𝑡) = 𝛽𝑒−
20𝑡

𝑇 (5.14)

Step 6: Apprise the positions and velocities of atoms using the following equations.

 𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖

𝑑𝑣𝑖
𝑑(𝑡) + 𝑎𝑖

𝑡(𝑡) (5.15)

 𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑 + 𝑣𝑖
𝑡(𝑡) (5.16)

Step 7: Reiterate till step 6 until the dissolution criteria is satisfied.

Step 8: The atom’s best solution represents the global optimal solution.

5.4 Spotted Hyena Optimizer (SHO)

Gaurav Dhiman et.al. (2017) [122] presented SHO, a metaheuristic algorithm

simulating the hunting strategy, social interaction and accommodating behavior of

spotted hyenas. Searching for prey, surrounding, and confronting prey are the three

basic actions of SHO, which are represented mathematically. The intended action

or goal in an encircling activity is the best solution, while the remaining search

agents can alter their placements in view of the discovered best solution. Spotted

hyenas are able to locate and encircle their prey. Spotted hyenas have a tendency to

detect the location of their and encircle it. Target prey’s location is considered as

the current optimum solution. According to this current best solution, other

elements update their positions. The spotted hyenas use the best search agent as a

benchmark for their hunting approach, and they adjust the placements of other

search agents in a cluster of optimum solutions. The process flow of ASO is shown

in Figure 5.3. The mathematical description and modelling of the SHO algorithm

is outlined in the below steps.

77

Figure 5.3. Flow chart of SHO

Step 1: The position of spotted hyenas (search agents) is initialized randomly in

the search space:

 𝑃𝑖 = (𝑝𝑖 …………… . 𝑝𝑛) (5.17)

 where n represents the space dimension. i = 1, 2, . . ., n

Step 2: Determine the position of prey and spotted hyenas using the following

equations. The coefficients h, B, N, and E are initialized.

 𝐷ℎ = |𝐺. 𝑃𝑝(𝑗) − 𝑃(𝑗)| (5.18)

 𝑃(𝑗 + 1) = 𝑃𝑝(𝑗) − 𝐸. 𝐷ℎ (5.19)

𝐷ℎ - Prey and spotted hyena’s distance

𝐺, 𝐸 – Coefficient vectors

 j- Current iteration

 𝑃𝑝 , 𝑃- Position of prey and spotted hyena.

Start

Initialize the random population of
spotted hyena (P)

Initialize the parameters h, B, E, and N

Evaluate the fitness of each search agent and
choose the best

 Update the position of each search agent

Reinitialize the search agents
that go beyond the search space

Stop

Termination
Criteria Achieved

Return the best optimal
solution

No

Yes

Calculate the fitness values of updated agents

Update the group of spotted hyenas Ch to updated
search agent fitness value

78

 𝐺 = 2. 𝑟1 (5.20)

 𝐸 = 2ℎ. 𝑟2 − ℎ (5.21)

𝑟1, 𝑟2 are random vectors in between [0,1]

 ℎ = 5 − [𝐼𝑡𝑟 × (
5

𝑀𝐼𝑡𝑟
)] (5.22)

To maintain a proper equilibrium between two main processes of optimization i.e.

the exploration and exploitation, ℎ is decreased linearly from a constant value to 0.

Step 3: The fitness of all spotted hyenas is evaluated, and the search agent closed

to optimum or nearest to prey is explored. To obtain satisfactory performance the

clusters are defined using the following equations.

 𝐶ℎ = 𝑃𝑘 + 𝑃𝑘+1 + ⋯ 𝑃𝑘+𝑁 (5.23)

 𝑁 = 𝐶𝑜𝑢𝑛𝑡𝑛(𝑃ℎ, 𝑃ℎ+1, 𝑃ℎ+2, …… . . (𝑃ℎ+𝑀)) (5.24)

𝐶ℎ is a cluster formed by a group of spotted hyenas

𝑁 ia s number of spotted hyenas.

𝑃ℎ is the position of the first optimal-spotted hyena.

𝑃𝑘 is the position of various other spotted hyenas.

Step 4: Apprise the positions of the search agents using the below equation.

 𝑃(𝑗 + 1) =
𝐶ℎ

𝑁
 (5.25)

Step 5: Reinitiate the position of spotted hyenas that go beyond the defined space.

Step 6: Repeat till step 4 if termination criteria is not satisfied.

Step 7: The best position of spotted hyenas represents the global optimal solution.

5.5 Sooty Tern Optimization (STO)

Gaurav Dhiman et.al. (2019) [123] proposed a novel bio-inspired stochastic

optimization algorithm STO that replicates the sooty tern's natural movement and

attacking patterns. Sooty terns migrate in groups during migration. These sooty

terns have a specific behavior that avoids collision among them and provides

79

guidance while migrating. The sooty terns' starting locations are distinct to prevent

collisions. A sooty tern having low fitness as compared to other sooty terns leads a

group of individual’s sooty terns in the direction of the sooty tern with the

best survival. Other sooty terns adjust their starting positions based on the position

of the best fit sooty tern. Migration and attacking manners are the two main

components of the STO algorithm. In the exploration behavior sooty tern satisfies

the conditions like collision avoidance utilizing a function SA, Convergence in the

best neighbor’s direction and updating their positions as per the optimum search

agent. In the attacking approach (exploitation) while attacking on the prey, sooty

terns generate the spiral behavior in the air. Figure 5.4 presents the flow chart of

STO.

Figure 5.4. Flow chart of STO

The migration and attacking pattern of sooty terns can be mathematically modeled

by the following steps.

Step 1: The position of sooty terns (search agents) is initialized randomly in the

search space:

 �⃗� 𝑠𝑡 = (𝑦𝑖, 𝑦2, ………𝑦𝑛) (5.26)

where n represents the space dimension. i = 1, 2, . . ., n

Start

Initialize the random population of
Search agent (P)

Initialize the parameters 𝑆𝐴 and 𝐶B

Evaluate the fitness of each search agent and
choose the best agent

Update the positions of search agents

Reinitialize the agents
that go beyond the search space

Stop

Termination
Criteria Achieved

Position of best agent gives the
global optimal solution

No

Yes

Update the parameters 𝑆𝐴 and 𝐶B

Calculate the fitness value of each
search agent

80

Step 2: Determine the position of sooty terns and initialize the coefficients and

parameters 𝑆𝑎 and 𝐶𝑏.

 𝐶 𝑠𝑡 = 𝑆𝑎 × �⃗� 𝑠𝑡(𝑧) (5.27)

 𝑆𝑎 = 𝐶𝑓 − (𝑧 × (
𝐶𝑓

𝑀𝑖𝑡𝑟
)) (5.28)

𝐶 𝑠𝑡 position of sooty terns having collision avoidance.

�⃗� 𝑠𝑡(𝑧)- current position of sooty terns.

𝐶𝑓 – a variable used to avoid collision is decreased to 0.

Z = 1, 2, . . ., 𝑀𝑖𝑡𝑟.

Step 3: Evaluate the fitness of every search agent using the following equations.

 �⃗⃗� 𝑠𝑡 = 𝐶𝑏 × (�⃗� 𝑏𝑠𝑡(𝑧) − �⃗� 𝑏𝑠𝑡(𝑧)) (5.29)

 𝐶𝑏 = 0.5 × 𝑟 (5.30)

�⃗⃗� 𝑠𝑡 expresses the search agent’s location, 𝐶𝑏 is a constant used to improve the

exploration, 𝑟 is a random number between [0,1].

 �⃗⃗� 𝑠𝑡 = 𝐶 𝑠𝑡 + �⃗⃗� 𝑠𝑡 (5.31)

�⃗⃗� 𝑠𝑡 shows the distance between search agent and best fit agent.

Step 4: Each search agent’s position can be updated using the following equations.

 𝑥1 = 𝑟𝑎𝑑𝑖𝑢𝑠 × sin(𝑙) (5.32)

 𝑥2 = 𝑟𝑎𝑑𝑖𝑢𝑠 × cos(𝑙) (5.33)

 𝑥3 = 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑙 (5.34)

 𝑟 = 𝑢 × 𝑒𝑘𝑣 (5.35)

𝑟𝑎𝑑𝑖𝑢𝑠 – radius of spiral turn

𝑙 – variable in the range of [0 ≤ k ≤ 2π]

81

𝑢, 𝑣 – constant used to define the spiral shape.

 �⃗� 𝑠𝑡(𝑧) = (�⃗⃗� 𝑠𝑡 × (𝑥1 + 𝑥2 + 𝑥3)) × 𝑌𝑏𝑠𝑡(𝑧) (5.36)

Step 5: Update the parameters 𝑆𝑎 and 𝐶𝑏.

Step 6: Repeat steps 2 to 6 until the stopping criterion is satisfied.

Step 7: Best position of the sooty tern gives the optimal solution.

5.6 Novel Hybrid STOPSO Algorithm.

5.6.1 Novelty of Work

The main contribution of the proposed study can be described as follows:

 For controlling the trajectory of a robotic manipulator, a hybrid algorithm

STOPSO algorithm is proposed.

 By combining the exploitation capacity of PSO, the STO's exploitation

capability is considerably enhanced. As a consequence, controller parameters

are convergent to actual values with the least amount of error.

 Convergence analysis, robustness, reliability, and statistics analysis are the

parameters to evaluate the trajectory tracking performance of proposed STOPSO

algorithm for a robotic manipulator and compared with the previous algorithms

existing in the literature.

5.6.2 Hybrid STOPSO Algorithm.

This section describes the proposed hybrid STOPSO algorithm briefly. The

performance of any metaheuristic algorithm is dependent on its capabilities of

exploring the solutions discovering the global optimal solution. As per NFL

theorem none of the metaheuristic algorithms can offer the best solution for

every challenging and complex problem. Some algorithms have a tendency to get

stuck in local best solution while some algorithms have a poor rate of convergence.

Maintaining a balance between exploration and exploitation for the optimization

algorithms is a very difficult task. STO have high exploration abilities, and sooty

82

terns do this by adjusting their positions in relation to the positions of other birds to

prevent collisions as they hunt for the optimal solution. In the exploitation,

algorithms have tendency to get detained in local optimal solution because sooty

terns create a spiral path in air for attacking the prey. PSO has better exploitation

capability and poor exploration capability. So, by integrating the STO algorithm

with the PSO algorithm, the exploitation potential of STO can be increased by

combining the qualities of two algorithms in the hybrid form. The STO is employed

initially to identify the optimal solution, and then the PSO algorithm's exploitation

capabilities are used to further enhance the outcomes and get the optimal solution

overall. The proposed hybrid STOSPO algorithm has been mathematically modeled

as follows:

 Step 1: Set the sooty terns' initial positions in the search area at random.

 𝑋 𝑠 = (𝑥 1, 𝑥 2, …………………𝑥 𝑛) (5.37)

where, n signifies the space dimension.

Step 2: Initialize the velocities of search agents in the random search space.

 �⃗� 𝑠 = (𝑣 1, 𝑣 2, …………………𝑣 𝑛) (5.38)

Step 3: The position of best sooty tern (𝑥 𝑏𝑠) that indicates the best search agent, is

determined by evaluating the fitness of all search agents in terms of minimization

or maximization, respectively.

Step 4: The parameters SA, CB, w are initialized that permits the search agents to

travel in the search space. These terms are defined as follows:

 𝑆𝐴 = 𝐶𝑓 − (𝑧 ∗ (
𝐶𝑓

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
⁄)) (5.39)

 𝑤 = 𝑤𝑚𝑖𝑛 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 (5.40)

where, 𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 are the minimum and maximum value of inertia weight, 𝐶𝑓 is

the controlling variable that is decreased linearly from 𝐶𝑓 to zero, 𝑖𝑡𝑒𝑟 is the current

iteration and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the maximum number of iterations.

 z= 0, 1, 2, 3, ……………………….., 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.

83

 𝐶𝐵 = 0.5 ∗ 𝑅𝑎𝑛𝑑 (5.41)

where, 𝑅𝑎𝑛𝑑 is the random number in the range [0,1].

Step 5: Using the following equations, search agents' positions are updated:

 𝑥′ = 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 ∗ sin(𝑖) (5.42)

 𝑦′ = 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 ∗ cos(𝑖) (5.43)

 𝑧′ = 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 ∗ 𝑖 (5.44)

 𝑟 = 𝑢 ∗ 𝑒𝑘𝑣 (5.45)

where, 𝑅𝑎𝑑𝑖𝑜𝑢𝑠 is the radius of the spiral movement, i is the variable ranging [0 ≤

𝑘 ≤ 2𝜋], u and v are the constant terms.

 𝐶 𝑠 = 𝑆𝐴 ∗ 𝑥𝑆 (5.46)

 �⃗⃗� 𝑠 = 𝐶𝐵 ∗ (𝑥 𝑏𝑠 − 𝑥 𝑠) (5.47)

 �⃗⃗� 𝑠 = 𝐶 𝑆 + �⃗⃗� 𝑠 (5.48)

 𝑥 𝑠 = (�⃗⃗� 𝑠 ∗ (𝑥′ + 𝑦′ + 𝑧′)) ∗ 𝑥 𝑏𝑠 (5.49)

Step 6: The velocity of search agents is adjusted depending on the position of the

optimum search agent using the following equations:

 �⃗� 𝑠(𝑖𝑡𝑒𝑟 + 1) = 𝑤 ∗ �⃗� 𝑠(𝑖𝑡𝑒𝑟) + 𝑐1 ∗ 𝑟1 ∗ (𝑥 𝑏𝑠 − 𝑋 𝑠(𝑖𝑡𝑒𝑟)) (5.50)

where, 𝑐1 is acceleration parameter and 𝑟1 is the random number ranging in [0, 1]

Step 7: Apprise the position of search agents as follows:

 𝑋 𝑠(𝑖𝑡𝑒𝑟 + 1) = 𝑋 𝑠(𝑖𝑡𝑒𝑟) + �⃗� 𝑠(𝑖𝑡𝑒𝑟 + 1) (5.51)

Step 8: 𝑆𝐴 and 𝐶𝐵 the dynamic terms are updated.

Step 9: The search agents whose positions are going beyond the search space need

to be reinitialized.

Step 10: If the termination requirements, such as the minimal error or total

number of iterations, are met, the algorithm is ended. Instead, repeat step (3) (9).

Step 11: The best search agent’s position (𝑥 𝑏𝑠) denotes the global optimal solution.

84

 Figure 5.5 Flow chart of proposed hybrid STOPSO algorithm

5.7 Results and Discussion

For trajectory tracking of a nonlinear robotic manipulator having two links using

PID controller, all the above metaheuristic algorithms (ASO, AOA, STO, SHO,

and Hybrid STOPSO) have been employed and tuned the controller parameters to

an optimum value. Because the robotic manipulator's MIMO dynamics two distinct

PID controllers have been designed. Each of these techniques has optimized the

cost function and successfully tracked the reference trajectory. The weighted sum

of ITAE shown in eq. (5.52) has been considered as the performance index.

 𝑓 = 𝑤1 ∗ ∫ 𝑒1(𝑡)𝑡𝑑𝑡 + 𝑤2 ∗ ∫ 𝑒2(𝑡)𝑡𝑑𝑡 (5.52)

𝑤1 and 𝑤2 are the weights assigned to fitness of both the links having values 0.5.

The aim of implementation of these algorithms is to tune the PID controller for

reference trajectory tracking. Thus, these algorithms return the optimum controller

gains and minimized errors and fitness value. For tracking a trajectory, a reference

Start

Initialize the random positions and
velocities of search agents (sooty tern)

Estimate the fitness of search agents

Update the position of search agents based on
spiral movement

Reinitialize the position of search agents
that go beyond the search space

Stop

Termination Criteria
Achieved

Position of best search agent
represents the global optimal solution

No

Yes

Update the velocity of search agents

Update the position of search agents with
updation in velocity

Initialize the dynamic parameters S
A
, C

B,
 w

Update the dynamic parameters S
A
, C

B,
 w

85

is required, hence a cubic polynomial trajectory as shown in eq. (5.53) has been

considered as the reference.

 𝜃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 (5.53)

Figure 5.6 and Figure 5.7 shows the reference trajectory and trajectory generation

in SIMULINK.

Figure 5.6. Polynomial Reference trajectory

Figure 5.7 Reference trajectory generation in SIMULINK

Table 5.1 below presents the parameters considered for the implementation of the

above metaheuristic algorithms. Each of these techniques has 30 search agents, and

86

100 iterations. Two separate PID controllers have been designed so 6 gain

parameters need to tune thus, the dimension in the algorithm has been considered

as 6. The upper and lower bounds have been assigned to each of the gain

parameters.

Table 5.1 Values of the parameters considered for simulation

S.No Algorithm

parameters

Description PID Values

1 Dimensions Number of variables 6

2 Upper Bounds Upper constraint on gain [200,100,50,100,100,10]

3 Lower Bounds Lower constraint on gain [2, 2, 2, 2, 2, 2]

4 No of search agent Population size 30

5 No of iterations Iterations taken 100

6 Number of Runs Number of algorithm’s run 10

Every run returns the optimum value of the controller gains with minimum fitness

function. For these values, the lowest fitness value is considered as the optimum

solution. Table 5.2 presents the PID controller’s gain for both links, the error value

for each link, and the optimum fitness value.

Table 5.2 Controller gains and objective function values for metaheuristic

algorithms

S.

No.

Algorithm Link 1 PID controller

gains

Link 2 PID controller gains Objective

function

value

1 ASO [197.08264,99.8055,

3.3841]

[95.4870,92.845, 4.636] 0.04970

2 AOA [200, 100, 2] [100, 100,

8.74633118938909]

0.04607

3 STO [200, 100, 2] [99.9750, 90.9847, 8.8450] 0.04573

87

4 SHO [186.648660502925,

100, 2]

[100, 100, 2] 0.04944

5 Hybrid

STOPSO

[200, 100, 2] [100, 100, 8.80909] 0.04541

Because of the stochastic nature of such metaheuristic algorithms, a statistical

analysis has been performed by running every algorithm 10 times. Statistical

analysis has been carried out using a measure of central tendencies. Table 5.3

presents these measures obtained during the statistical analysis. The ASO algorithm

has shown a minimum fitness value of 0.04970 and a standard deviation of 0.09732,

the AOA algorithm has shown a minimum fitness of 0.04607 with a standard

deviation of 0.06423. The algorithm STO has shown an improved fitness value of

0.04573 and a standard deviation of 0.08570. The SHO has shown a minimum

value of 0.0494 with the highest standard deviation of 0.28495. Further to improve

the controller’s performance, the proposed STOPSO algorithm has been

implemented that improved the fitness value with the value of standard deviation

as 0.0002. This statistical analysis validates the performance of these algorithms

and shows that the hybrid STOPSO has performed the best and returned the

minimum fitness value.

Table 5.3 Statistical Analysis of the fitness function in 10 runs.

S.No Algorithm Minimum Maximum Mean Median Standard

Deviation

1 ASO 0.04970 0.05264 0.05126 0.05105 0.09732

2 AOA 0.04607 0.04821 0.04800 0.04822 0.06423

3 STO 0.04573 0.04822 0.04659 0.04629 0.08570

4 SHO 0.04944 0.05930 0.05439 0.05435 0.28495

5 Hybrid

STOPSO

0.04541 0.0461 0.04601 0.0460 0.0002

88

A non-parametric statistical test known as Friedman's test has been carried out to

assess the performance of various metaheuristic optimization algorithms. The

obtained Friedman’s ranking has been approximated and a final ranking has been

assigned to each algorithm.

Table 5.4 presents each algorithm used on PID controllers along with its final

ranking and Friedman ranking. As per this ranking the hybrid STOPSO performs

the best thus, attains a rank of 1 and SHO performs the worst and attains a rank of

5. The algorithm STO achieves a rank of 2 followed by AOA rank 3 and ASO

having rank 4.

Table 5.4 Ranking of the metaheuristic algorithms on PID controller designed

according to the Friedman’s Test

Algorithm Friedman's Ranking Final Ranking

ASO 4.3 4

AOA 2.8 3

SHO 4.7 5

STO 2 2

 Hybrid STOPSO 1.1 1

89

Figure 5.8 Friedman’s ranking of the metaheuristic algorithms on PID controller

Evidently the proposed algorithm hybrid STOPSO gives the best performance and

SHO performs the worst in robotic manipulator’s trajectory control. The SHO

achieves the rank of 5 and shows the poor statistical value of standard deviation

and substantially high fitness value.

 Figure 5.9 Trajectory tracking using ASO tuned PID

4.3
4

2.8 3

4.7
5

2 2

1.1 1

0

1

2

3

4

5

6

Friedman's Ranking Final Ranking

Ranks of Algorithms- PID Controller
tuning

ASO AOA SHO STO Hybrid STOPSO

90

Figure 5.10 Trajectory tracking using AOA tuned PID

Figure 5.9 shows the trajectory tracking using ASO tuned PID, this provided value

of objective function to be 0.04970. Initially their deviations from reference in

trajectory but soon it attained the trajectory.

Figure 5.11 Trajectory tracking using SHO tuned PID

91

Figure 5.10 and Figure 5.11 present the trajectory tacking using AOA and ASO

tuned PID controller. AOA has obtained value of objective function to be 0.04607

while SHO provided 0.04944. In AOA tuned PID controller the first link has some

overshoots in tracking the reference trajectory while link 2 has no overshoots.

SHO has shown initial overshoots in the trajectory of both links. These overshoots

are not desirable for the satisfactory tracking of trajectory in real-time

implementation. Statistical investigation has revealed that SHO's performance is

the worst. Figure 5.12 shows the trajectory tracking using STO-tuned PID

controller and returned the value of the objective function to be 0.04573. Compared

to the earlier algorithms, STO has greatly improved the fitness value and

demonstrated good trajectory tracking. The oscillatory behavior of the actual

trajectory of link 1 is improved.

Figure 5.12 Trajectory tracking using STO tuned PID

92

Figure 5.13 Trajectory tracking using hybrid STOPSO tuned PID

To improve the exploitation capabilities of STO, a new hybrid algorithm STOPSO

has been proposed. Further the hybrid STOPSO shown in Figure 5.13 has enhanced

the fitness value. It attains the best ranking in Friedman’s test.

 Figure 5.14 Convergence curve of all the metaheuristic algorithms.

Figure 5.14 shows the convergence curve of all the algorithms. The convergence

curve clearly shows that the algorithms AOA, STO, and hybrid STOPSO converge

93

to lower error values, out of which the hybrid STOPSO algorithm converges to the

least error value, while ASO and SHO converge to bigger values of error. Thus the

designed novel hybrid STOPSO shows the convergence to minimum fitness value.

Table 5.5 shows the comparative study of the STOPSO algorithm with the other

algorithms implanted for trajectory tracking of a robotic manipulator utilizing the

PID controller. In [71] and [92], the authors have employed ACO and WOA for

trajectory tracking problem of a robotic manipulator having two links by tuning a

PID controller. The performance of the controller has been assessed for IATE error,

and fitness values of 0.1648 and 3.102, respectively, have been achieved. Table 5.5

shows the fitness value attained using the AOA, ASO, SHO, STO, and hybrid

STOPSO algorithm. In comparison to ACO and WOA, the obtained fitness values

using the proposed algorithms are significantly lower.

Table 5.5 Comparative study of the proposed algorithm

S.

No

Technique

Implemented

Fitness

function value

Technique

Implemented

Fitness

function value

1. ACO [71] 0.1648 ASO 0.04970

2. WOA [92] 3.102 AOA 0.04607

STO 0.04573

SHO 0.04944

Hybrid STOPSO 0.04541

94

Chapter 6

Conclusion and Future Scope of the Work

6.1 Conclusion

There are many applications of robotic manipulators in the household, industry, and

medical fields. From the perspective of control, these systems are considerably

more complicated and uncertain. Researchers are discovering many innovative

ways to control these systems so that they can perform the intended tasks with

increased efficiency. Trajectory tracking and path planning have extensive

importance in robotic applications. The conventional and intelligent both control

techniques have been implemented on robotic systems for various applications.

Adaptive control, optimum control, and PID control are the conventional

approaches, whereas intelligent control includes the application of artificial

intelligence techniques such metaheuristic optimization algorithms. The intelligent

control methods enhance the task handling capabilities of robotic systems.

In this work, the trajectory control problem of robotic manipulator has been

addressed using adaptive sliding mode control (ASMC), PID and FOPID control,

extremum seeking control, and then implementation of various metaheuristic

algorithms (GWO, WOA, MFO, and MVO) on the controller designed for a

linearized model. Furthermore, the metaheuristic algorithms (ASO, AOA, SHO,

and STO) have been implemented on a nonlinear model of a robotic manipulator.

The performance indices are weighted sum of IAE and ITAE for implementation

of these algorithms. Because of the stochastic nature of such algorithms, a statistical

analysis has been performed by taking 10 runs for each algorithm. As a result, all

the above algorithms have attained good tracking of the trajectory under the

constraints. Afterwards, to enhance the exploitation of the implemented algorithm

STO a novel hybrid algorithm STOPSO has been designed and tested for tracking

the trajectory of a robotic manipulator. The novel hybrid algorithm has attained the

trajectory tracking by considerably improving the exploitation capability of STO

95

with incorporation of PSO. A nonparametric statistical test called the Friedman

anova has been carried out to assess the efficacy of the presented algorithms, and a

rank has been given to each algorithm. According to this test, MFO attains the best

ranking and WOA takes the worst ranking in the trajectory control on a linearized

model of robotic manipulator, and for the nonlinear model analysis hybrid STOPSO

attains a rank of 1 followed by STO and SHO attains the worst rank. Hybrid

STOPSO performs the best and SHO performs the worst. Further, a perturbation-

type ESC has been designed to track the optimum point of the defined trajectory.

The following points summarize the findings of the work.

1. The designed adaptive sling mode control and extremum -seeking control

techniques can achieve the reference trajectory effectively.

2. For PID and FOPID implementation using the algorithms GWO, WOA,

MFO, and MVO, the algorithm MFO performs the best with the cost

function values 0.2721 and 0.1736 respectively, and WOA performs the

worst by returning the cost function value 0.2723 and 0.1779.

3. For PID implementation using the algorithms AOA, ASO, SHO, and STO,

the algorithms STO performs the best and provides the cost function value

as 0.04573, and the algorithms ASO performs the worst with the cost

function value as 0.04970.

4. To enhance the performance of STO a novel hybrid algorithm STOPSO has

been designed and applied on PID for trajectory tracking. This algorithm

provides the cost function value as 0.04541 which is improved as compared

to STO.

5. A nonparametric test of Friedman’s anova has been carried out and a

ranking has been given to each of these algorithms.

96

6.2 Future Scope

Manipulators are extremely popular robotic systems in performing industrial tasks.

Intelligent control techniques enhance the task handling ability of such systems.

The tracking performance of the robotic manipulators can be explored for different

hybrid algorithms. The application of STOPSO in a variety of other applications,

such as path planning, joint angle orientation, and tuning of other conventional

controllers, may also be of interest to research scholars and scientists around the

world in the future. These algorithms are recent and have a wide possibility of

implementation in the control design for various other robotic systems, further, this

work provides a guideline or framework to implement such metaheuristic

techniques on the hardware model of the robotic systems.

97

Bibliography

1. Vidyasagar, M. (2002). Nonlinear systems analysis. Society for Industrial

and Applied Mathematics.

2. Niku, S. B. (2020). Introduction to robotics: analysis, control, application

s. John Wiley & Sons.

3. Mohammed, A. A., & Eltayeb, A. (2018, August). Dynamics and control of

a two-link manipulator using PID and sliding mode control. International

Conference on Computer, Control, Electrical, and Electronics Engineering

(ICCCEEE) (pp.1-5). IEEE. doi:10.1109/ICCCEEE.2018.8515795/

4. Sharma, R., Gaur, P., & Mittal, A. P. (2015). Performance analysis of two-

degree of freedom fractional order PID controllers for robotic manipulator

with payload. ISA transactions, 58, 279-291. doi:

10.1016/j.isatra.2015.03.013

5. Mohan, V., Chhabra, H., Rani, A., & Singh, V. (2019). An expert 2DOF

fractional order fuzzy PID controller for nonlinear systems. Neural

Computing and Applications, 31, 4253-4270.

6. Koo, K. M., & Kim, J. H. (1994). Robust control of robot manipulators with

parametric uncertainty. IEEE Transactions on Automatic Control, 39(6),

1230-1233.

7. Zhang, D., & Wei, B. (2017). A review on model reference adaptive control

of robotic manipulators. Annual Reviews in Control, 43, 188-198, doi:

10.1016/j.arcontrol.2017.02.002.

8. Castillo, O., & Melin, P. (2003). Intelligent adaptive model-based control

of robotic dynamic systems with a hybrid fuzzy-neural approach. Applied

Soft Computing, 3(4), 363-378.

98

9. Tokhi, M. O., & Azad, A. K. (1996). Modelling of a single-link flexible

manipulator system: theoretical and practical

investigations. Robotica, 14(1), 91-102.

10. Chhabra, H., Mohan, V., Rani, A., & Singh, V. (2016). Multi objective PSO

tuned fractional order PID control of robotic manipulator. In Intelligent

Systems Technologies and Applications 2016 (pp. 567-572). Springer

International Publishing.

11. Kathuria, T., Kumar, V., Rana, K. P. S., & Azar, A. T. (2018). Control of a

three-link manipulator using fractional-order pid controller. In Fractional

Order Systems (pp. 477-510). Academic Press.

12. Gupta, M. K., Sinha, N., Bansal, K., & Singh, A. K. (2016). Natural

frequencies of multiple pendulum systems under free condition. Archive of

Applied Mechanics, 86, 1049-1061.

13. Nagrath, I. J., Shripal, P. P., & Chand, A. (1995, January). Development

and implementation of intelligent control strategy for robotic manipulator.

In Proceedings of IEEE/IAS International Conference on Industrial

Automation and Control (pp. 215-220). IEEE. doi:

10.1109/iacc.1995.465840.

14. Jin, L., Li, S., Yu, J., & He, J. (2018). Robot manipulator control using

neural networks: A survey. Neurocomputing, 285, 23-34.

15. Kim, Y. H., Lewis, F. L., & Dawson, D. M. (2000). Intelligent optimal

control of robotic manipulators using neural networks. Automatica, 36(9),

1355-1364.

16. Jin, B. (1993, October). Robotic manipulator trajectory control using neural

networks. In Proceedings of 1993 International Conference on Neural

Networks (IJCNN-93-Nagoya, Japan) (Vol. 2, pp. 1793-1796). IEEE. doi:

10.1109/ijcnn.1993.717002.

17. Kim, S. H., Jang, C. W., Chai, C. H., & Choi, H. G. (1997, June). Trajectory

control of robotic manipulators using chaotic neural networks.

In Proceedings of international conference on neural networks

99

(ICNN'97) (Vol. 3, pp. 1685-1688). IEEE. doi:

10.1109/ICNN.1997.614148.

18. Wang, L., Chai, T., & Zhai, L. (2009). Neural-network-based terminal

sliding-mode control of robotic manipulators including actuator

dynamics. IEEE Transactions on Industrial Electronics, 56(9), 3296-3304.

doi: 10.1109/TIE.2008.2011350.

19. Zhu, Q. G., Chen, Y., & Wang, H. R. (2009, July). The RBF neural network

control for the uncertain robotic manipulator. In 2009 International

Conference on Machine Learning and Cybernetics (Vol. 3, pp. 1266-1270).

IEEE. doi: 10.1109/ICMLC.2009.5212337

20. Hu, H., & Woo, P. Y. (2006). Fuzzy supervisory sliding-mode and neural-

network control for robotic manipulators. IEEE Transactions on Industrial

Electronics, 53(3), 929-940. doi: 10.1109/TIE.2006.874261.

21. Rahmani, B., & Belkheiri, M. (2016, November). Robust adaptive control

of robotic manipulators using neural networks: Application to a two link

planar robot. In 2016 8th International conference on modelling,

identification and control (ICMIC) (pp. 839-844). IEEE. doi:

10.1109/ICMIC.2016.7804231.

22. Lee, M. J., & Choi, Y. K. (2004). An adaptive neurocontroller using RBFN

for robot manipulators. IEEE Transactions on Industrial Electronics, 51(3),

711-717.doi: 10.1109/TIE.2004.824878.

23. Ozaki, T., Suzuki, T., Furuhashi, T., Okuma, S., & Uchikawa, Y. (1991).

Trajectory control of robotic manipulators using neural networks. IEEE

Transactions on Industrial Electronics, 38(3), 195-202. doi:

10.1109/41.87587.

24. Li, S., Zhang, Y., & Jin, L. (2016). Kinematic control of redundant

manipulators using neural networks. IEEE transactions on neural networks

andlearningsystems, 28(10),2243-2254

doi:10.1109/TNNLS.2016.2574363.

100

25. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

26. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic

synthesis with a fuzzy logic controller. International journal of man-

machine studies, 7(1), 1-13.

27. Bai, Y., & Wang, D. (2006). Fundamentals of fuzzy logic control—fuzzy

sets, fuzzy rules and defuzzifications. Advanced fuzzy logic technologies in

industrial applications, 17-36.

28. Lim, C. M., & Hiyama, T. (1991). Application of fuzzy logic control to a

manipulator. IEEE Transactions on Robotics and Automation, 7(5), 688-

691.

29. de Silva, C. W. (1995). Applications of fuzzy logic in the control of robotic

manipulators. Fuzzy Sets and Systems, 70(2-3), 223-234. doi:

10.1016/0165-0114(94)00219-W.

30. Kumbla, K. K., & Jamshidi, M. (1994, June). Control of robotic

manipulator using fuzzy logic. In Proceedings of 1994 IEEE 3rd

International Fuzzy Systems Conference (pp. 518-523). IEEE. doi:

10.1109/fuzzy.1994.343731.

31. Karahan, O., & Ataşlar-Ayyıldız, B. (2019). Optimal design of fuzzy PID

controller with CS algorithm for trajectory tracking control. In Intelligent

Computing: Proceedings of the 2018 Computing Conference, Volume 1 (pp.

174-188). Springer International Publishing.

32. Er, M. J., & Sun, Y. L. (2001). Hybrid fuzzy proportional-integral plus

conventional derivative control of linear and nonlinear systems. IEEE

Transactions on Industrial Electronics, 48(6), 1109-1117.

33. Huang, S. J., & Lian, R. J. (1997). A hybrid fuzzy logic and neural network

algorithm for robot motion control. IEEE Transactions on Industrial

Electronics, 44(3), 408-417.

34. Tsai, C. H., Wang, C. H., & Lin, W. S. (2000). Robust fuzzy model-

following control of robot manipulators. IEEE Transactions on fuzzy

systems, 8(4), 462-469. doi: 10.1109/91.868952.

101

35. Zhu, D., Mei, T., Luo, M., & Guan, K. (2009, August). Fuzzy SVM

controller for robotic manipulator based on GA and LS algorithm. In 2009

Sixth international conference on fuzzy systems and knowledge

discovery (Vol. 6, pp. 263-266). IEEE. doi: 10.1109/FSKD.2009.190.

36. Norouzi, A., & Koch, C. R. (2019, May). Robotic manipulator control using

PD-type fuzzy iterative learning control. In 2019 IEEE Canadian

Conference of Electrical and Computer Engineering (CCECE) (pp. 1-4).

IEEE. doi: 10.1109/CCECE.2019.8861721.

37. Yu, J. P., Ma, Y., Chen, B., & Yu, H. S. (2011). Adaptive fuzzy

backstepping position tracking control for a permanent magnet synchronous

motor. Int. J. Innov. Comput. Inf. Control, 7(4), 1589-1602., doi:

10.1007/978-3-030-67723-7_8.

38. Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Performance analysis of

fractional order fuzzy PID controllers applied to a robotic

manipulator. Expert systems with applications, 41(9), 4274-4289. doi:

10.1016/j.eswa.2013.12.030.

39. Kumar, V., & Rana, K. P. S. (2017). Nonlinear adaptive fractional order

fuzzy PID control of a 2-link planar rigid manipulator with

payload. Journal of the Franklin Institute, 354(2), 993-1022., doi:

10.1016/j.jfranklin.2016.11.006.

40. Muñoz-Vázquez, A. J., Gaxiola, F., Martínez-Reyes, F., & Manzo-

Martínez, A. (2019). A fuzzy fractional-order control of robotic

manipulators with PID error manifolds. Applied soft computing, 83,

105646. doi: 10.1016/j.asoc.2019.105646.

41. Bingül, Z., & Karahan, O. (2011). A Fuzzy Logic Controller tuned with

PSO for 2 DOF robot trajectory control. Expert Systems with

Applications, 38(1), 1017-1031. doi: 10.1016/j.eswa.2010.07.131.

42. Yilmaz, B. M., Tatlicioglu, E., Savran, A., & Alci, M. (2021). Adaptive

fuzzy logic with self-tuned membership functions based repetitive learning

102

control of robotic manipulators. Applied Soft Computing, 104, 107183. doi:

10.1016/j.asoc.2021.107183.

43. Kumar, A., & Kumar, V. (2017). Evolving an interval type-2 fuzzy PID

controller for the redundant robotic manipulator. Expert Systems with

Applications, 73, 161-177. doi: 10.1016/j.eswa.2016.12.029.

44. Li, T. H. S., & Huang, Y. C. (2010). MIMO adaptive fuzzy terminal sliding-

mode controller for robotic manipulators. Information Sciences, 180(23),

4641-4660. doi: 10.1016/j.ins.2010.08.009.

45. Martínez-Soto, R., Castillo, O., & Aguilar, L. T. (2014). Type-1 and Type-

2 fuzzy logic controller design using a Hybrid PSO–GA optimization

method. Information Sciences, 285, 35-49. doi: 10.1016/j.ins.2014.07.012

46. Lee, T. H. et al. (2020). Expert control system. AccessScience, McGraw-

Hill Education.

47. Feigenbaum, E. A. (1981). Expert systems in the 1980s. State of the art

report on machine intelligence. Maidenhead: Pergamon-Infotech.

48. Linkens, D. A., & Chen, M. Y. (1995). Expert control systems—2. Design

principles and methods. Engineering Applications of Artificial

Intelligence, 8(5), 527-537.

49. Geng, Z., & Jamshidi, M. (1988, December). Expert self-learning controller

for robot manipulator. In Proceedings of the 27th IEEE Conference on

Decision and Control (pp. 1090-1095). IEEE. doi:

10.1109/CDC.1988.194486.

50. Åström, K. J., Anton, J. J., & Årzén, K. E. (1986). Expert

control. Automatica, 22(3), 277-286.

51. Teoh, E. K., & Wong, C. Y. (1991, June). An expert system for real-time

control of the sir-3 robotic system. In 1991., IEEE International Sympoisum

on Circuits and Systems (pp. 2709-2712). IEEE.

52. Duriez, T., Brunton, S. L., & Noack, B. R. (2017). Machine learning

control-taming nonlinear dynamics and turbulence (Vol. 116). Cham,

Switzerland: Springer International Publishing.

103

53. Huang, H. C., & Chuang, C. C. (2020). Artificial bee colony optimization

algorithm incorporated with fuzzy theory for real-time machine learning

control of articulated robotic manipulators. IEEE Access, 8, 192481-

192492.

54. Gautier, N., Aider, J. L., Duriez, T. H. O. M. A. S., Noack, B. R., Segond,

M., & Abel, M. (2015). Closed-loop separation control using machine

learning. Journal of Fluid Mechanics, 770, 442-457..

55. Diveev, A., Konstantinov, S., Shmalko, E., & Dong, G. (2021). Machine

learning control based on approximation of optimal

trajectories. Mathematics, 9(3), 265.

56. Sathya, R., & Abraham, A. (2013). Comparison of supervised and

unsupervised learning algorithms for pattern classification. International

Journal of Advanced Research in Artificial Intelligence, 2(2), 34-38.

57. Kostov, A., Andrews, B. J., Popovic, D. B., Stein, R. B., & Armstrong, W.

W. (1995). Machine learning in control of functional electrical stimulation

systems for locomotion. IEEE Transactions on Biomedical

Engineering, 42(6), 541-551.

58. Wang, S., Chaovalitwongse, W., & Babuska, R. (2012). Machine learning

algorithms in bipedal robot control. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 42(5), 728-743.

59. Mirjalili, S., Dong, J. S., & Lewis, A. (2020). Nature-inspired

optimizers. Studies in Computational Intelligence, 811, 7-20.

60. Sharma, A., Sharma, A., Pandey, J. K., & Ram, M. (2022). Swarm

intelligence: foundation, principles, and engineering applications. CRC

Press.

61. Chakraborty, A., & Kar, A. K. (2017). Swarm intelligence: A review of

algorithms. Nature-inspired computing and optimization: Theory and

applications, 475-494.

62. Chhabra, H., Mohan, V., Rani, A., & Singh, V. (2016). Multi objective PSO

tuned fractional order PID control of robotic manipulator. In Intelligent

104

Systems Technologies and Applications 2016 (pp. 567-572). Springer

International Publishing.doi: 10.1007/978-3-319-47952-1_45.

63. Lopez-Franco, C., Diaz, D., Hernandez-Barragan, J., Arana-Daniel, N., &

Lopez-Franco, M. (2022). A Metaheuristic Optimization Approach for

Trajectory Tracking of Robot Manipulators. Mathematics, 10(7), 1051

64. Yadav, S., Kumar, S., Goyal, M., PID Tuning and Stability Analysis of

Hybrid Controller for Robotic Arm Using ZN, PSO, ACO, and GA, (2022)

International Review of Mechanical Engineering (IREME), 16 (5), pp. 257-

264.doi:https://doi.org/10.15866/ireme.v16i5.21982

65. Ayala, H. V. H., & dos Santos Coelho, L. (2012). Tuning of PID controller

based on a multiobjective genetic algorithm applied to a robotic

manipulator. Expert Systems with Applications, 39(10), 8968-8974. doi:

10.1016/j.eswa.2012.02.027.

66. Vijay, M., Jena, D., & Member, I. E. E. E. (2014). GA based adaptive

controller for 2DOF robot manipulator. IFAC Proceedings Volumes, 47(1),

670-675.

67. Mohan, V., Chhabra, H., Rani, A., & Singh, V. (2018). Robust self-tuning

fractional order PID controller dedicated to non-linear dynamic

system. Journal of Intelligent & Fuzzy Systems, 34(3), 1467-1478. doi:

10.3233/JIFS-169442.

68. Vijay, M., & Jena, D. (2014, December). Optimal GA based SMC with

adaptive PID sliding surface for robot manipulator. In 2014 9th

International Conference on Industrial and Information Systems (ICIIS) 1-

6. IEEE.

69. Sharma, R., Rana, K. P. S., & Kumar, V. (2014, February). Statistical

analysis of GA based PID controller optimization for robotic manipulator.

In 2014 International conference on issues and challenges in intelligent

computing techniques (ICICT) (pp. 713-718). IEEE.

70. Mu, Y., Zhang, L., Chen, X., & Gao, X. (2016, August). Optimal trajectory

planning for robotic manipulators using chicken swarm optimization.

105

In 2016 8th International conference on intelligent human-machine systems

and cybernetics (IHMSC) (Vol. 2, pp. 369-373). IEEE. doi:

10.1109/IHMSC.2016.107.

71. Singh, R., & Prasad, L. B. (2018, November). Optimal trajectory tracking

of robotic manipulator using ant colony optimization. In 2018 5th IEEE

Uttar Pradesh section international conference on electrical, electronics

and computer engineering (UPCON) (pp. 1-6). IEEE. doi:

10.1109/UPCON.2018.8597087.

72. Khan, A. H., Li, S., & Luo, X. (2019). Obstacle avoidance and tracking

control of redundant robotic manipulator: An RNN-based metaheuristic

approach. IEEE transactions on industrial informatics, 16(7), 4670-4680.

doi: 10.1109/TII.2019.2941916.

73. Khan, A. T., Li, S., Kadry, S., & Nam, Y. (2020). Control framework for

trajectory planning of soft manipulator using optimized RRT

algorithm. IEEE Access, 8, 171730-171743.

74. Kumar, A., & Kumar, V. (2017). Hybridized ABC-GA optimized fractional

order fuzzy pre-compensated FOPID control design for 2-DOF robot

manipulator. AEU-International Journal of Electronics and

Communications, 79, 219-233. doi: 10.1016/j.aeue.2017.06.008.

75. Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Comparative study of

controller optimization techniques for a robotic manipulator. In

Proceedings of the Third International Conference on Soft Computing for

Problem Solving (pp. 379-393). Springer, New Delhi.

76. Sharma, R., Gaur, P., & Mittal, A. P. (2015, March). Performance

evaluation of cuckoo search algorithm based FOPID controllers applied to

a robotic manipulator with actuator. In 2015 International conference on

advances in computer engineering and applications (pp. 356-363). IEEE.

77. Cruz-Bernal, A. (2013). Meta-heuristic optimization techniques and its

applications in robotics. Recent Advances on Meta-Heuristics and Their

Application to Real Scenarios, 53.

106

78. Yeasmin, S., & Shill, P. C. (2017, December). GA-based adaptive fuzzy

logic controller for a robotic arm in the presence of moving obstacle.

In 2017 3rd International conference on electrical information and

communication technology (EICT) (pp. 1-6). IEEE.

79. Al-Dois, H., Jha, A. K., & Mishra, R. B. (2014, November). GA-based

control of a robot manipulator in a foundry workcell. In Asia-Pacific World

Congress on Computer Science and Engineering (pp. 1-8). IEEE.

80. Zennir, Y., Mechhoud, E. A., Seboui, A., & Bendib, R. (2017, October).

Multi-controller approach with PSO-PI λ D μ controllers for a robotic wrist.

In 2017 5th International conference on electrical engineering-boumerdes

(ICEE-B) (pp. 1-7). IEEE.

81. Liu, Y., Jiang, D., Yun, J., Sun, Y., Li, C., Jiang, G., ... & Fang, Z. (2022).

Self-tuning control of manipulator positioning based on fuzzy PID and PSO

algorithm. Frontiers in Bioengineering and Biotechnology, 9, 1443.

82. Chhabra, H., Mohan, V., Rani, A., & Singh, V. (2016). Multi objective PSO

tuned fractional order PID control of robotic manipulator. In Intelligent

Systems Technologies and Applications 2016 (pp. 567-572). Springer

International Publishing. doi: 10.1007/978-3-319-47952-1_45.

83. Brand, M., Masuda, M., Wehner, N., & Yu, X. H. (2010, June). Ant colony

optimization algorithm for robot path planning. In 2010 international

conference on computer design and applications (Vol. 3, pp. V3-436).

IEEE..

84. Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2017). An improved ant

colony algorithm for robot path planning. Soft computing, 21, 5829-5839.

85. Baghli, F. Z., & Lakhal, Y. (2017). Optimization of arm manipulator

trajectory planning in the presence of obstacles by ant colony

algorithm. Procedia Engineering, 181, 560-567.

86. Kumar, A., & Kumar, V. (2017, November). Artificial bee colony based

design of the interval type-2 fuzzy PID controller for robot manipulator.

In TENCON 2017-2017 IEEE Region 10 Conference (pp. 602-607). IEEE.

107

87. Elkhateeb, N., & Badr, R. I. (2017). Novel PID tracking controller for 2DOF

robotic manipulator system based on artificial bee colony algorithm. The

Scientific Journal of Riga Technical University-Electrical, Control and

Communication Engineering, 13, 55-62.

88. Patle, B. K., Pandey, A., Jagadeesh, A., & Parhi, D. R. (2018). Path planning

in uncertain environment by using firefly algorithm. Defence

technology, 14(6), 691-701.

89. Tripathi, S., Shrivastava, A., & Jana, K. C. (2020). GWO based PID

controller optimization for robotic manipulator. In Intelligent Computing

Techniques for Smart Energy Systems: Proceedings of ICTSES 2018 (pp.

943-951). Springer Singapore.

90. Gaidhane, P. J., & Nigam, M. J. (2018). A hybrid grey wolf optimizer and

artificial bee colony algorithm for enhancing the performance of complex

systems. Journal of computational science, 27, 284-302.

91. Obadina, O. O., Thaha, M. A., Mohamed, Z., & Shaheed, M. H. (2022).

Grey-box modelling and fuzzy logic control of a Leader–Follower robot

manipulator system: A hybrid Grey Wolf–Whale Optimisation

approach. ISA transactions, 129, 572-593.

92. Loucif, F., Kechida, S., & Sebbagh, A. (2020). Whale optimizer algorithm

to tune PID controller for the trajectory tracking control of robot

manipulator. Journal of the Brazilian Society of Mechanical Sciences and

Engineering, 42(1), 1.

93. Du, M., Guo, Z., & Meng, C. (2019, August). Tuning of SMC parameters

for robotic manipulator based on whale optimization algorithm. In 2019

WRC symposium on advanced robotics and automation (WRC SARA) (pp.

248-253). IEEE.

94. Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., &

Aldape-Pérez, M. (2020). Multi-objective meta-heuristic optimization in

intelligent control: A survey on the controller tuning problem. Applied Soft

Computing, 93, 106342. doi: 10.1016/j.asoc.2020.106342.

108

95. Kumar, A., & Kumar, V. (2017). Hybridized ABC-GA optimized fractional

order fuzzy pre-compensated FOPID control design for 2-DOF robot

manipulator. AEU-International Journal of Electronics and

Communications, 79, 219-233.doi: 10.1016/j.aeue.2017.06.008.

96. Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate

Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for

global optimization. Engineering Applications of Artificial Intelligence, 90,

103541.

97. Jain, M., Maurya, S., Rani, A., & Singh, V. (2018). Owl search algorithm:

a novel nature-inspired heuristic paradigm for global optimization. Journal

of Intelligent & Fuzzy Systems, 34(3), 1573-1582.

98. Bennett, S. (1993). Development of the PID controller. IEEE Control

Systems Magazine, 13(6), 58-62.

99. Dumlu, A., & Erenturk, K. (2013). Trajectory tracking control for a 3-dof

parallel manipulator using fractional-order PID control. IEEE Transactions

on Industrial Electronics, 61(7), 3417-3426.

100. Zhihong, M., Paplinski, A. P., & Wu, H. R. (1994). A robust MIMO

terminal sliding mode control scheme for rigid robotic manipulators. IEEE

transactions on automatic control, 39(12), 2464-2469.

101. Neila, M. B. R., & Tarak, D. (2011). Adaptive terminal sliding mode

control for rigid robotic manipulators. International Journal of

Automation and Computing, 8, 215-220.

102. Baek, J., Jin, M., & Han, S. (2016). A new adaptive sliding-mode control

scheme for application to robot manipulators. IEEE Transactions on

industrial electronics, 63(6), 3628-3637.

103. Islam, S., & Liu, X. P. (2010). Robust sliding mode control for robot

manipulators. IEEE Transactions on industrial electronics, 58(6), 2444-

2453.

109

104. Zhang, C., & Ordóñez, R. (2011). Extremum-seeking control and

applications: a numerical optimization-based approach. Springer Science

& Business Media.

105. Ariyur, K. B., & Krstic, M. (2003). Real-time optimization by extremum-

seeking control. John Wiley & Sons.

106. Calli, B., Caarls, W., Jonker, P., & Wisse, M. (2012, October).

Comparison of extremum seeking control algorithms for robotic

applications. In 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 3195-3202). IEEE.

107. Malek, H., & Chen, Y. (2016). Fractional order extremum seeking control:

performance and stability analysis. IEEE/ASME Transactions on

Mechatronics, 21(3), 1620-1628.

108. Krstic, M., & Wang, H. H. (2000). Stability of extremum seeking feedback

for general nonlinear dynamic systems. Automatica-Kidlington, 36(4),

595-602.

109. Krstić, M. (2000). Performance improvement and limitations in extremum

seeking control. Systems & Control Letters, 39(5), 313-326

110. Wang, L., Chen, S., & Ma, K. (2016). On stability and application of

extremum seeking control without steady-state

oscillation. Automatica, 68, 18-26.

111. Dochain, D., Perrier, M., & Guay, M. (2011). Extremum seeking control

and its application to process and reaction systems: A

survey. Mathematics and Computers in Simulation, 82(3), 369-380.

112. Zhang, C., & Ordonez, R. (2007). Numerical optimization-based

extremum seeking control with application to ABS design. IEEE

Transactions on Automatic Control, 52(3), 454-467.

113. Brunton, S. L., Rowley, C. W., Kulkarni, S. R., & Clarkson, C. (2010).

Maximum power point tracking for photovoltaic optimization using

ripple-based extremum seeking control. IEEE transactions on power

electronics, 25(10), 2531-2540.

110

114. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer.

Advances in engineering software, 69, 46-61.

115. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm.

Advances in engineering software, 95, 51-67.

116. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-

inspired heuristic paradigm. Knowledge-based systems, 89, 228-249.

117. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse

optimizer: a nature-inspired algorithm for global optimization. Neural

Computing and Applications, 27(2), 495-513.

118. Sharma, A., Sharma, A., Averbukh, M., Jately, V., & Azzopardi, B.

(2021). An effective method for parameter estimation of a solar

cell. Electronics, 10(3), 312.

119. Sharma, A., Sharma, A., Averbukh, M., Rajput, S., Jately, V., Choudhury,

S., & Azzopardi, B. (2022). Improved moth flame optimization algorithm

based on opposition-based learning and Lévy flight distribution for

parameter estimation of solar module. Energy Reports, 8, 6576-6592.

120. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A.

H. (2021). The arithmetic optimization algorithm. Computer methods in

applied mechanics and engineering, 376, 113609.

121. Dhiman, G., & Kaur, A. (2019). STOA: a bio-inspired based

optimization algorithm for industrial engineering problems. Engineering

Applications of Artificial Intelligence, 82, 148-174.

122. Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-

inspired based metaheuristic technique for engineering applications.

Advances in Engineering Software, 114, 48-70.

123. Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and

its application to solve a hydrogeologic parameter estimation problem.

Knowledge-Based Systems, 163, 283-304.

111

List of Publications

1. Devendra Rawat, Mukul Kumar Gupta and Abhinav Sharma. (2023).

Trajectory Control of Robotic Manipulator using Metaheuristic

Algorithms. International Journal of Mathematical, Engineering and

Management Sciences, 8(2), 264-281.

2. Devendra Rawat, Mukul Kumar Gupta and Abhinav Sharma. (2022).

Intelligent Control of Robotic Manipulators: A Comprehensive Review,

Spat. Inf. Res. (2022).

3. Devendra Rawat, Mukul Kumar Gupta and Abhinav Sharma. (2022).

Optimum point trajectory tracking of a robotic manipulator system using

Extremum Seeking control ICICCD Nov 2022.

4. Devendra Rawat, Mukul Kumar Gupta and Abhinav Sharma. (2022).

Metaheuristic Algorithms based Optimization of Robotic Manipulator for

Trajectory Tracking. International Journal of Advanced Technology and

Engineering Exploration (IJATEE) (Under Review)

112

Plagiarism Report

