7						
	N	n	-	n	Λ	•
					•	_

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Immunology
Program: B.Sc. Microbiology
Course Code: HSMB 2022
Semester: 3rd
Duration: 3 Hours
Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
Q 1	What is immunological dysregulation, and how does it contribute to autoimmune diseases?		CO2
Q 2	Provide an example of an autoimmune disease and the corresponding self-antigen involved.		CO3
Q 3	Define hypersensitivity reactions and give an example of a Type I hypersensitivity reaction.		CO3
Q 4	What is the mechanism behind Type II hypersensitivity reactions, and provide an example.		CO4
Q 5	What is the role of cytotoxic T cells in Type IV hypersensitivity reactions.		CO5
Q 6	Define immunodeficiencies and provide an example of a severe combined immunodeficiency (SCID).		CO5
Q 7	Leukocyte adhesion deficiency (LAD) affects which cellular process, and what are the consequences for the immune system?		CO1
Q 8	Differentiate between benign and malignant tumors.	1.5	CO2
Q 9	What are tumor antigens, and how do they differ from normal antigens?	1.5	CO2

Q 10	Name two major types of cancer therapy targeting the immune system.	1.5	CO3	
Q 11	What is the role of checkpoint inhibitors in cancer immunotherapy?	1.5	CO4	
Q 12	How is the zone of equivalence related to the optimal conditions for immunodiffusion?	1.5 CO4		
Q 13	In immunoelectrophoresis, what role does electrophoresis play in the separation of proteins?	1.5 CO5		
Q 14	How does immunoelectrophoresis combine the principles of electrophoresis and immunodiffusion?	1.5 CO5		
Q 15	How can viruses contribute to the development of cancer?	1.5	CO4	
Q 16	Name a common environmental factor associated with an increased risk of cancer.	1.5	CO5	
Q 17	Define monoclonal antibodies and provide an example of their use in cancer therapy.	1.5	CO5	
Q 18	Name two major types of cancer therapy targeting the immune system.	1.5	CO4	
Q 19	What are tumor antigens, and how do they differ from normal antigens?	1.5	CO3	
Q 20	Differentiate between benign and malignant tumors.		CO3	
	Section B (4Qx5M=20 Marks)			
Q 1	Investigate the role of MHC diversity in transplantation and immune responses. How does the recognition of foreign MHC molecules by T cells influence graft acceptance or rejection?	5	CO3	
Q 2	Explore the concept of cross-presentation in antigen processing. How does cross-presentation by dendritic cells contribute to the activation of CD8+ T cells?		CO4	

Q 3	Differentiate between the classical, alternative, and lectin	5	CO4
	pathways of complement activation. How does each pathway		
	initiate the cascade and contribute to pathogen elimination?		
Q 4	Explore the evolving role of flow cytometry in single-cell		CO5
	analysis and its applications in immunology and cancer		
	research. How does flow cytometry contribute to the		
	advancement of precision medicine?		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Discuss the challenges associated with interpreting Western	15	CO5
	blotting results, particularly in terms of background noise		
	and nonspecific binding. How can these challenges be		
	mitigated to ensure accurate data interpretation?		
Q 2	Compare the advantages and limitations of immunodiffusion	15	CO4
	and ELISA in terms of sensitivity and specificity. In what		
	scenarios would one technique be preferred over the other?		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Discuss the principles of flow cytometry, emphasizing its	10	CO4
	role in cell analysis and sorting. How do fluorescently		
	labeled antibodies contribute to the multiparametric analysis		
	of individual cells?		
Q 2	Describe the process of Western blotting, emphasizing the	10	CO5
	significance of gel electrophoresis and antibody detection.		
	How does Western blotting contribute to the identification of specific proteins?		