Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Analytical Geometry Program: B. Sc. (Mathematics by Research) Course Code: MATH 1069

Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Find the equation of the circle cutting off intercepts 4 and 6 on the coordinate axes and passing through the origin.	4	CO1	
Q 2	Show that the locus of the point of intersection of perpendicular tangents to a parabola is the directrix.	4	CO2	
Q 3	The foot of the perpendicular from the origin to a plane is (13, -4, -3). Find the equation of the plane.	4	CO4	
Q 4	Find the equation of the hyperbola whose centre is (1, 0), one focus is (6, 0) and length of transverse axis is 6.	4	CO3	
Q 5	The equation $25(x^2 - 6x + 9) + 16y^2 = 400$ represents an ellipse. Find the centre and foci of the ellipse.	4	CO1	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Prove that the angle between the lines given by $x + y + z = 0$, $ayz + bzx + cxy = 0$ is $\frac{\pi}{2}$ if $a + b + c = 0$.	10	CO3	
Q 7	A circle of radius 2 and the centre $(2, 3, 0)$ lies in the plane $z = 0$. Find the equation of the sphere containing this circle and passing through the point $(1, 1, 1)$.	10	CO2	
Q 8	The equation of two diameters of a circle are $2x + y - 3 = 0$ and $x - 3y + 2 = 0$. If the circle passes through the point (-2, 5), find the equation.	10	CO4	

Q 9	Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1$, $z = 3$. OR Find the equation of the right circular cylinder whose axis is $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z}{3}$ and passes through the point (0, 0, 3).	10	CO2	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Define reciprocal cone and show that the cones $ax^2 + by^2 + cz^2 = 0$ and $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocal.	20	CO2	
Q 11	Show that the circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$ touch each other. Find the coordinates of the point of contact and the equation of the common tangents. Show that the general equation of the circle that passes through the point $A(x_1, y_1)$ and $B(x_2, y_2)$ may be written as $(x - x_1)(x - x_2) + x - y = 1$	20	CO4	
	$(y - y_1)(y - y_2) + k \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_1 & 1 \end{vmatrix} = 0.$			