Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Mathematical Physics II Program: BSc Physics (H) Course Code: PHYS1034

Semester: II Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory (Q9 and Q11 have internal choice)

SECTION A (50x4M=20Marks)				
S. No.		Marks	СО	
Q 1	Convert the given ordinary polynomial into Hermite polynomial $12 x^2 + 14x + 3$	4	CO1	
Q 2	Discuss briefly 'isomorphism' and 'homomorphism' in group theory	4	CO1	
Q 3	Calculate propagation error for $F = x+y$ and $F = x-y$. Consider $x = 9.51\pm0.10$, $y = 5.90\pm0.10$	4	CO2	
Q 4	Evaluate, $\int_0^{\pi/2} \sqrt{\cot\theta} d\theta$	4	CO3	
Q 5	From the given data find out 'n' (order of Hermite polynomial) $\int_{-\infty}^{\infty} e^{-x^2} H_n^2(x) dx = 384\sqrt{\pi}$	4	CO4	
SECTION B (4Qx10M= 40 Marks)				
Q 6	What is probable error? Calculate standard error and probable error for a measurement with correlation coefficient of 0.6 and total observations of 20.	10	CO2	

Q 7	A square membrane (2.5 cm \times 2.5 cm) is under tension of 200 dynes/cm			
	and is executing vibration with (4,3) normal modes. Calculate its velocity	10	COA	
	and frequency if the membrane has areal density of 0.02 σ/cm^2 .	10	CO4	
	and frequency if the memorane has arear density of 0.02 g/em .			
Q 8	$\int_{-\infty}^{\infty} -x^4 = 2$, $\int_{-\infty}^{\infty} e^{-x^2}$, π			
	Show that, $\int_0^\infty e^{-x} x^2 dx = \int_0^\infty \frac{1}{\sqrt{x}} dx = \frac{1}{4\sqrt{2}}$			
	(3) (1)	10	CO3	
	$[\text{Consider:} \left\lceil \left(\frac{3}{4}\right) \right\rceil \left\lceil \left(\frac{1}{4}\right) = \pi\sqrt{2} \right\rceil$			
Q 9	Solve, $\frac{d^2y}{d^2y} + xy = 0$			
	dx ²			
	OR	10	CO1	
	Solve $(x^2 + 1) \frac{d^2y}{d^2} + x \frac{dy}{d^2}$ $yy = 0$			
	Solve, $(x + 1)\frac{dx^2}{dx^2} + x\frac{dx}{dx} - xy = 0$			
			I	
	SECTION C (20x20M=40 Marks)			
(2QX20M-40 Marks)				
Q 10	(a) Solve 1D vibrating string to find out V (x, t).			
	(b) Show that deflection of a vibrating string of length π fixed at both	15		
	(b) show that defice to if a vibrating string of length it fixed at both onde takes the form $V(x, t) = \lambda$ (cost sin $x = \cos^2 t \sin^2 x$)			
	[Consider initial deflection $F(y) = \lambda(\cos y \sin 2y)$	5	CO3	
	$v^2 = 1$ and initial velocity = 0]			
0.11				
QII	Derive the general solution for Laplace equation in cylindrical			
	coordinates system.			
	OR			
	Solve steady state heat flow equation to find out temperature distribution,	20	CO2	
	T (x, y) at any point P (x, y). Assume, plate is finite (length, a) along x			
	and infinite (m) along v			
	and minine (w) along y.			