Name:

Enrolment No:

Semester: IV

Time: 03 hrs.

10

CO3

UPES

End Semester Examination, May 2024

Course: Computer Organization & Architecture

Program: B. Tech. (Electronics & Computer Engineering)

Course Code: CSEG 2044 Max. Marks: 100

Instructions: Attempt all the questions.

language.

SECTION A (5Qx4M=20Marks)			
S. No.		Marks	СО
Q 1	Differentiate RISC and CISC architecture.	4	CO1
Q 2	Design D flip-flop using J-K flip flop.	4	CO2
Q 3	Elucidate the significance of control unit in a digital computer. List its important functions while execution of assembly language program.	4	CO3
Q 4	Differentiate strobe control and handshaking asynchronous data transfer techniques.	4	CO4
Q 5	Design and implement 3 to 8 line decoder circuit.	4	CO2
	(4Qx10M= 40 Marks)		1
Q 6	Elucidate the significance of following instructions: (a) LDA (b) CLA (c) BSA (d) ION (e) SKI (f) EI (g) SHR (h) RET (i) CMP (j) TST	10	CO1
Q 7	Design a sequence generator using D flip-flop to generate the sequence 101100110.	10	CO2
Q 8	Explain microinstruction format and discuss the significance of each		

field. Write the symbolic microprogram for fetch routine in assembly

Q 9	Explain associative memory with the help of a suitable block diagram. Give a suitable example explaining how the argument data is searched within the associative memory.		
	OR	10	CO4
	What do understand by direct memory access (DMA)? Explain DMA controller with suitable block diagram.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) What do you understand by pipelining? In certain scientific computations it is necessary to perform arithmetic operation (A_i + B_i) * (C_i + D_i) with a stream of numbers. Specify a pipeline configuration to carry out the task. List the contents of all registers in the pipeline for i = 1 through 6. (b) Design and explain hardwired control unit of a digital computer. OR (a) Differentiate arithmetic pipeline and instruction pipeline. Design a arithmetic pipeline for floating-point subtraction of two numbers: X = 0.3235 X 10³ Y = 0.2365 X 10² Explain the pipelining operation with the help of flow-chart. 	20	CO3
Q 11	 (b) Explain address sequencing for control memory in microprogrammed control unit with a suitable diagram. (a) A computer employs RAM chips of 256 X 8 and ROM chips of 1024 X 8. The computer system needs 2K bytes of RAM, 2K bytes of 		
	ROM. (i) How many RAM and ROM chips are needed? (ii) Draw a memory-address map for the system. (iii) Give the address range in hexadecimal for RAM and ROM. (b) A 4-way set associative cache memory unit with a capacity of 16 KB	20	CO4
	is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. What are the number of bits for the TAG field?		