Name:

Enrolment No:

UPES

UPES

End Semester Examination, May 2024

Course: Mathematical Physics III Program: B.Sc. (Hons.) Physics Course Code: PHYS 2027

Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions:

1. All questions are compulsory (Q. No. 9 and Q. No. 11 have internal choices).

2. Scientific calculators can be used for calculations.

SECTION A (50x4M=20Marks)

	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Define essential and removable singularities with examples in each case.	4	CO1
Q 2	Represent Dirac Delta function as a Fourier integral.	4	CO2
Q 3	State the shifting theorem for Laplace transform with an example.	4	CO3
Q 4	Prove that $ e^{iz} = e^{-y}$ where symbols have their usual meaning.	4	CO1
Q 5	Define the orthogonality properties of Sine and Cosine functions in Fourier analysis.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	State the residue theorem. Find the poles and residue of the function $\frac{1}{z^m(1-z)^n}$ where m, n are positive integers. (3+7 = 10 marks)	10	CO3
Q 7	Suppose that f is a function of period 2 with $f(t) = t$ for $0 < t < 2$. Show that $f(t) = 1 - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\pi t}{n}$ and sketch the graph of the function indicating the value at each discontinuity. Substitute an appropriate value of t to deduce the Leibniz's series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ (7+3 = 10 marks)	10	CO4
Q 8	Prove that the Fourier transform of a Gaussian function is again a Gaussian function.	10	CO2
Q 9	Show that $\frac{n}{2 \cosh^2 nx}$ is Dirac-Delta function and independent of n.	10	CO3

	OR			
	Use Laplace transform to solve: $\frac{dx}{dt} + y = \sin t, \frac{dy}{dt} + x = \cos t$, given that $x = 2, y = 0$ at $t = 0$.			
SECTION-C (2Qx20M=40 Marks)				
Q 10	A resistance R is in series with inductance L and the combination is supported with emf $E(t)$. The current <i>i</i> is given by $L\frac{di}{dt} + Ri = E$. If the switch is connected at $t = 0$ and disconnected at $t = a$, find the current <i>i</i> as a function of <i>t</i> .	20	CO4	
Q 11	Prove that $\int_0^\infty \sin x^2 dx = \int_0^\infty \cos x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$. OR	20	<u> </u>	
	Evaluate $\frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \frac{e^{zt}}{\sqrt{z+1}} dz$ where <i>a</i> and <i>t</i> are any positive constants.	20	CO3	