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ABSTRACT 

The Convolutional Neural Network (CNN) is a complex architecture that 

performs magnificently in image classification and segmentation problems. 

Still, selecting an effective architecture is typically hindered by several 

parameters. Empirically, evolutionary algorithms (EA) have been found 

adequate in parameter selection and automated neural network search. 

However, the huge computational requirements imposed by evolutionary search 

make its applicability unexplored. Consequently, the idea of a CNN architecture 

selection based on EA is challenging as comparing complex candidate 

architectures towards their fitness would involve massive computations. This 

study introduces a novel encoding technique that effectively represents complex 

convolutional neural network (CNN) architectures. The article provides a 

definition of fundamental components used to depict the architecture of a 

Convolutional Neural Network (CNN), including the genesis block, transit 

block, agile block, and output block. The encoding structure employed in this 

study facilitates the generation of chromosomal structures with varying lengths. 

These structures are initiated through the utilization of evolutionary algorithms. 

A comparative study is offered to evaluate the effectiveness of the encoding 

representation in comparison to existing methods. The assessment is predicated 

upon various aspects, including the quantity of encoding parameters, the 

expenditure associated with training, and the level of efficiency.  We propose a 

novel framework using an adapted Genetic Algorithm (GA) that automatically 

evolves an effective CNN architecture. To enhance the effectiveness of the 

genetic algorithm (GA), we address several key aspects. Firstly, we improve the 

encoding scheme to better represent the solutions within the genetic framework. 

Additionally, we refine the process of initializing the initial population, ensuring 

that it is well-suited to the problem domain. Furthermore, we implement a method 

for generating diverse offspring, which helps explore the solution space more 

thoroughly. Moreover, we propose an optimized fitness function that is finely tuned 

to the problem at hand. This tailored fitness function is designed to accelerate 
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convergence while minimizing the risk of getting trapped in local optima. By 

strategically adjusting the fitness landscape, we aim to guide the evolutionary 

process towards more promising regions of the solution space, thereby enhancing 

the overall performance of the genetic algorithm. The method is validated with 

the benchmark MNIST, Fashion-MNIST, and CIFAR-10 datasets. The results 

are comparable to the best manual and automatic state-of-the-art architectures 

regarding accuracy, convergence rate, and consumed computation resources. 
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CHAPTER -1 

1 INTRODUCTION 

Convolutional Neural Networks (CNNs) belong to the class of supervised deep 

learning algorithms [8]. The aforementioned algorithms have demonstrated 

exceptional proficiency in various domains such as computer vision, speech 

recognition, visual or image recognition, image segmentation, and classification 

issues [9-11]. The architectural design of the Convolutional Neural Network 

(CNN) is composed of several key components, namely the convolutional layer, 

pooling layer, fully connected layer, and their intricate interconnections. Each 

layer is defined with some fixed set of operations to train the features from input 

training data, which helps to predict the output from the test data set. The 

convolutional layer's primary functions are feature extraction, while the pooling 

layer is used to remove redundant training information. The fully connected 

layer is utilized to compress the features and predict the output based on the 

number of classes. The CNN's efficiency depends on factors such as architecture 

selection [12-13] and hyperparameter selection [14-19]. The range of 

parameters in the architecture increases with model complexity, such as depth 

and width. Therefore, it requires more time and resources to train the complex 

models. The dataset size, pixel size, number of classes, and distribution play a 

crucial role in designing and training an efficient model. The performance of 

the model may suffer from overfitting if the training dataset is small and may 

suffer from underfitting in a linear model.  It is particularly challenging to 

collect large and equally balanced datasets in some domains such as medical 

and defense; consequently, we also require designing a CNN architecture that 

works effectively with adaptive data sets. 

In CNN, we pass input image as raw pixel data, which helps to learn the model 

using feature extraction in different layers, as shown in Figure 1.1. The CNN 

architecture representation comprises a variety of combinations of 

convolutional layers, pooling layers, and fully connected layers. The 
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convolutional layers consist of multiple two-dimensional matrices known as 

filters that can update using backpropagation on every iteration. Initial few 

convolutional layers are accountable for identifying low-level features of 

images like vertical and horizontal edges. In this layer, filters slide horizontally 

and vertically to scan the input images, and the weight matrices filters is 

multiplied with the input image in convolution operation. After that, the value 

of the filters is modified with each backpropagation operation using a gradient 

value. After convolution operation, the pooling layer is used, where we apply 

various mathematical functions to reduce the feature value of the input matrix's 

selected size and shift based on stride value. It helps to reduce redundancy using 

various functions max, min, and average and recombine minor features into a 

major one. After that, the activation function is used to increase the nonlinearity. 

As per requirement, multiple activation functions such as tanh [20], ReLU [21], 

and sigmoid [22] are used on the different middle and last convolutional layers. 

The flattened output from the preceding pooling or convolutional layer is 

thereafter transmitted to the fully connected layer. The dimensionality of images 

is reduced through the utilization of fully connected layers, which effectively 

decrease the amount of pixels involved in convolutional-max pooling 

procedures. The last layer, subsequent to the fully connected layers, utilizes the 

softmax activation function [23] to ascertain the likelihood that the input is 

associated with a particular class (classification). After obtaining the output 

predictions, a loss function is computed to quantify the discrepancy between the 

predicted outputs and the actual values. The network is subsequently trained by 

the utilization of backpropagation, a technique in which the error is propagated 

in reverse through the layers. The weights of the network are then changed using 

optimization techniques such as stochastic gradient descent (SGD) or its various 

adaptations. The process of forward pass (computing the output) and backward 

pass (updating the weights) is repeated iteratively until the network converges 

or a predefined stopping criterion is reached. Convolutional Neural Networks 

(CNNs) are utilized in other domains beyond image classification. These 

domains encompass speech recognition, natural language processing, video 
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processing [24], image enhancement, and image segmentation [25].

 

Figure 1.1 Representation of CNN architecture, including convolutional layer, 

pooling layer, the fully connected layer where a combination of convolution and 

pooling layer represents feature learning and fully connected is used for classification 

1.1 Motivations 

CNN architectures consist of several hyperparameters, which need to be tuned 

and optimized to construct an optimal architecture. The hyperparameters 

comprise a range of criteria, including the total number of filters, dimensions of 

the filters, the magnitude of the stride, the kind of pooling function, the choice 

of activation function, the learning rate, and several more. The task of selecting 

hyperparameters is a computational challenge, as it falls within the category of 

NP-hard problems [26]. This challenge arises due to the vast array of potential 

values and the presence of several parameters involved in the selection process. 

The achievement of an ideal architecture necessitates substantial human 

involvement, specialized knowledge in the relevant field, and a process of 

experimentation and refinement in the selection of hyperparameters. An 

automatic model is needed to design the architecture based on the input data 

values and efficiently identify a set of hyperparameters and their values. In order 

to assess the effectiveness of a Convolutional Neural Network (CNN) 

architecture using specific hyperparameters, it is customary to train and test the 

network on a substantial dataset. The computing cost and time required for this 

procedure might be significant, hence imposing constraints on the number of 

evaluations that can be executed within a metahurestic algorithm. 
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1.2 Problem Descriptions 

In recent years, there has been a growing body of research [27-32] focused on 

the automated selection of Convolutional Neural Network (CNN) architectures 

for image classification tasks. This article primarily focuses on several 

evolution-based algorithms [7] utilized for the purpose of creating and training 

from the ground up. In recent studies, few articles on NAS [33] and ENAS [34] 

have worked on the same domain. However, they primarily focus on comparing 

architecture selection techniques rather than optimization of training and hyper-

parameter algorithms. The researchers have started working on heuristic-based 

algorithms to rectify these issues. Various heuristic-based evolutionary 

methods, including genetic algorithm (GA) [35], particle swarm optimization 

(PSO) [36], genetic programming [37], and differential evolution (DE) [38], 

have been employed to address the issue of hyper-parameter optimization. 

These population-based algorithms work on the concepts of the biological 

behavior of evolution. When using evolutionary algorithms in this domain, we 

require some encoding technique to represent the CNN architecture in terms of 

the input population. The classification of encoding techniques is based on two 

types, namely fixed-length and variable-length encoding schemes. The fixed-

length encoding strategy is a straightforward method to execute when the 

maximum depth of a convolutional neural network (CNN) is predetermined. 

However, it has the potential to limit the extent of exploration [39-41]. The 

depth is adaptive in the variable-length encoding scheme, which means it can 

explore wider depending on requirements. Therefore variable length encoding 

scheme is more suitable in architecture evolution. Additionally, we must define 

all the functions again as per the encoding. The population is initialized 

randomly in an encoding scheme that makes it more generic in available search 

space and easy to use. After that, the encoded architecture is passed to an 

algorithm evaluated based on the dataset and fitness function. In this research 

accuracy (1-RMSE) is considered as a fitness function. Based on the fitness 

value, a few CNN architectures are selected to have high accuracy for the next 
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iteration. The next iteration generates the new population using mutation and 

crossover operators defined in the algorithm. It helps to identify new 

populations without stuck in local optima. After multiple iterations, this process 

will converge the automatically generate the most suitable CNN architecture in 

defined constraints. 

1.2.1 Hyperparameter Tuning 

CNN architectures typically have numerous hyperparameters, such as the 

number of layers, filter sizes, learning rates, sample sizes, etc. The high 

dimensionality of the hyperparameter space makes the search process more 

challenging and computationally expensive. 

1.2.2 Expensive Evaluation 

In order to assess the effectiveness of a Convolutional Neural Network (CNN) 

architecture using specific hyperparameters, it is customary to train and test the 

network on a substantial dataset. This process can be computationally expensive 

and time-consuming, limiting the quantity of assessments that can be 

undertaken within a genetic algorithm. 

1.2.3  Overfitting and Generalization 

Convolutional Neural Network (CNN) architectures have a tendency to exhibit 

overfitting, a phenomenon characterized by the model's ability to achieve high 

performance on the training dataset but perform badly on unseen or test data. 

Relying exclusively on the performance of the training data for the selection of 

hyperparameters may result in unsatisfactory generalization. It is imperative to 

exercise caution in order to ascertain that the chosen hyperparameters exhibit 

strong generalization capabilities when applied to data that has not been 

previously seen. 
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1.2.4 Search Space Exploration 

 CNN architectures can have a vast search space with a multitude of possible 

hyperparameter combinations. Genetic algorithms need to effectively explore 

this space to find optimal or near-optimal solutions. However, due to the high 

dimensionality and complex interactions, it can be challenging to achieve 

thorough exploration within a reasonable computational budget. 

1.3 Objectives 

Propose a methodology to design an effective CNN model using evolutionary 

algorithms for the given dataset. 

Sub-Objectives   

1. Design an encoding strategy to represent CNN architecture building 

blocks and their interconnections. 

2. Propose a method to fine-tune hyperparameters of the CNN model using 

evolutionary algorithms for the given dataset.  

3. Comparative analysis of the proposed CNN model with the existing 

state-of-the-art techniques in terms of classification accuracy and 

number of parameters. 

1.4 Contribution of the Thesis 

The general goal of this thesis is to propose a methodology to design an 

automatic CNN model using genetic algorithms using a given dataset. The 

research contribution is summarized below. 

To begin we proposed scheme employs a variable-length encoding scheme that 

represents the depth as well as the width of the architecture. The main advantage 

of the proposed encoding scheme is that it can represent architecture with a 

combination of two different layers. It makes the representation simple and one 

can increase the depth of architecture easily. Also, due to fewer parameters, one 

can define different evolutionary operations like mutation and crossover 
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efficiently. The scheme also supports increasing the complexity within the 

block. In the agile block, it can generate filter size and depth randomly and 

thereby increases complexity. The proposed scheme supports a hybrid-encoding 

scheme that utilizes binary as well as decimal representation. The encoding 

scheme offers the maximum choice of exploration in depth and width as well as 

faster optimization. We pass our initialized encoding method in evolutionary 

algorithms to optimize for better architecture. 

Second, we proposed a novel framework to evolve CNN architectures using 

genetic algorithms. The process encompasses the exploration and refinement of 

the architecture's hyperparameters, which encompass various aspects such as 

the number of layers, types of layers, sizes of filters, and patterns of 

connectivity. By iteratively applying selection, genetic operators, and 

evaluation, the genetic algorithm explores the search space of CNN 

architectures, favoring the ones that perform better on the defined metrics.  

Third, the proposed methodology applies the population initialization, fitness 

calculation and offspring generation of the CNN architecture. Initially, the 

number of population and the depth of each population is selected randomly. In 

the selected population, the first layer is fixed as a convolutional layer; then, 

convolutional and pooling layers are determined randomly with equal 

probability. The convolutional layer's filter count is randomly chosen in the 

given range. An individual's CNN is initially decoded using a predetermined set 

of hyperparameter parameters. CNN decoding is trained with training data, and 

accuracy is used to determine fitness. Because the training of CNN is a time-

taking task, we used half of the dataset for initial training to make it efficient. 

For offspring, generation two parents are selected based on which of two 

randomly selected individuals is more suitable. We build a new set of 

populations with equal probability by utilising mutation and crossover 

processes. The purpose of mutation is to explore the search space by introducing 

small random perturbations to the existing architectures. Mutation helps to 

prevent premature convergence and allows the algorithm to potentially discover 
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novel and beneficial architectures. The probability of mutation determines how 

frequently mutation is applied. A higher mutation rate increases the chances of 

mutation occurring. The objective of crossover is to generate offspring that 

acquire advantageous characteristics from both progenitors, hence potentially 

resulting in enhanced designs. The location(s) or process at which genetic 

material is exchanged between parental organisms is referred to as the crossover 

point(s). Various crossover tactics can be utilized, including single-point 

crossover, uniform crossover, and multi-point crossover. 

The proposed methodology is assessed and contrasted with 11 contemporary 

peer contenders, comprising of four partial tuning and seven automatic 

algorithms for determining the architectures of CNNs. The empirical findings 

obtained from conducting experiments on the MNIST, Fashion_MNIST, and 

CIFAR10 datasets demonstrate that the proposed methodology has the 

capability to autonomously create deep convolutional neural network (DCNN) 

architectures that are on par with, or perhaps beyond, the most advanced models 

currently available. 

1.5 Thesis Outline 

The following is an outline of the thesis. The second chapter delves into the 

fundamental components of computer vision technologies, starting with manual 

deep convolutional neural network designs employed in image classification. 

The different evolutionary algorithm based CNN architecture and MNIST, 

Fashion_MNIST, and CIFAR10 datasets are introduced in Chapter 3. A novel 

framework for designing CNN architecture using genetic algorithm is put 

forward in Chapter 4. In Chapter 5, we discussed the hyperparameters required 

to fine-tune the model. Furthermore, the suggested architecture's performance 

is evaluated and compared to existing approaches based on accuracy, epoch, 

number of generation and GPU days required. In Chapter 6, we summarize the 

thesis, reach conclusions, and talk about future research. 
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CHAPTER -2 

2 LITERATURE SURVEY 

The convolutional neural network is structured with a layered architecture that 

includes a convolutional layer, a pooling layer, and a fully connected layer. The 

raw pixel data from the input image is transmitted to a Convolutional Neural 

Network (CNN), facilitating the extraction of features at several levels to 

enhance the learning process of the model. Weighted filters are employed within 

the convolutional layer to extract distinctive characteristics from the input data, 

while the activation function is utilized to add nonlinearity. The pooling layer 

serves the purpose of eliminating redundant features from the convolutional 

layer by the utilization of procedures such as minimum, maximum, or average. 

The resulting matrix is converted into a unidimensional vector and utilized as 

input for a fully connected neural network layer during the training process. 

Numerous hyperparameters must be altered and enhanced to improve the CNN 

model. The filter size, the number of filters, pooling function, learning rate, 

activation function, stride size, and many more hyperparameters were among 

them. Due to huge parameters, researchers working on generating a CNN 

architectural design need help choosing appropriate hyperparameters. The 

complexity of the CNN architecture is a critical factor while learning 

complicated features from training datasets. As an architecture's depth and 

interconnections increase, so does its parameters and complexity. We need 

methods to automatically discover the hyperparameters and CNN architecture 

to solve the problem. 

The performance of CNN architecture is determined by accuracy, training cost, 

and parameter count. The accuracy is mostly determined by the training dataset 

(image size, quality, and distribution) and the complexity of the architecture. 

However, the training cost is mostly associated with parameters such as depth 

of architecture, size of kernels, number of kernels, learning rate, epoch, 

activation function and many more. Hence, selecting an accurate architecture is 
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tedious, as it takes knowledge of the CNN domain and several trial-and-error 

combinations for hyperparameter tuning. 

In recent years, several fascinating studies on deep CNNs have been carried out 

that elaborate on the crucial elements of CNN and their alternatives. There exist 

quite a few survey articles on CNN using evolutionary algorithms (EA) that 

focus on a certain category of optimization problems. The survey conducted in 

reference [42] highlights the inherent taxonomy observed in manually designed 

deep convolutional neural network (CNN) architectures. Consequently, the 

CNN architectures are categorized into seven distinct groups. The fundamental 

principles behind these seven categories encompass spatial exploitation, depth 

perception, multi-path propagation, breadth of coverage, feature-map 

utilization, channel enhancement, and attentiveness.  This study has identified a 

significant difficulty, namely that even minor adjustments to hyper-parameter 

values can have a substantial influence on the overall performance of a 

Convolutional Neural Network (CNN). Consequently, the meticulous choice of 

hyper-parameters emerges as a significant aspect of the design process, 

necessitating the implementation of a suitable optimization approach. In recent 

works, EA is gaining momentum for architecture selection and hyperparameter 

optimization in generic deep neural networks (DNN) models. A survey [43] 

described the EAs approach to designing and configuring deep neural network 

architecture. It has highlighted the strength of EAs in investigating the 

challenges involved in suitable DNN architecture design and training. The 

authors included designing and training different DNNs architectures, including 

CNNs, Recurrent neural networks (RNNs), Deep Boltzmann Machines 

(DBMs), Resitricted Boltzmann machines (RBMs), and Auto encoders (AEs). 

The paper includes the effectiveness of EAs in deep learning; however, more 

explanation is still needed why some EAs algorithms perform better than others. 
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2.1 Evolution of CNN Architetcure 

The inception and advancement of Convolutional Neural Network (CNN) 

architecture began in the 1980s. The initial proposal for a multilayered 

architecture, known as ConvNet, was put up in 1989 by LeCun. Numerous 

architectures were proposed after ConvNet by modifying the existing 

architecture. However, it could not solve real-life problems due to limited 

computation power and the limited dataset. In 1998, LeCun proposed a five-

layered architecture known as LeNet-5 [44], primarily used for digit 

classification. However, it could not gain much popularity in the different 

domains because the bounded computational power and the standard datasets 

are unavailable. After a decade, AlexNet [45] (a variant of CNN) brought the 

main breakthrough in the performance of the CNN architecture in ILSVRC 

(Image Large Scale Visual Recognition4 Challenge) in 2012. From 2012 until 

now, several attempts have been conducted to improve the accomplishment of 

CNN architecture. Several state-of-the-art convolutional neural network (CNN) 

architectures have been proposed, including VGG Net [46], ResNet [47], 

GoogleNet [48], XceptionNet [49], and others. These architectures have 

demonstrated significant advancements in image classification tasks through 

various approaches, such as increasing the depth or width of network layers or 

modifying the network parameters.   

The LeNet architecture emerged as the early convolutional neural network 

(CNN) model that shown promising outcomes in effectively addressing the 

challenge of digit recognition. The previous architectures considered each 

image pixel as a single unit for input in CNN architecture, which increased the 

number of input parameters and made it less efficient. LeNet has worked on this 

limitation by evaluating the correlation between neighboring pixels, reducing 

the number of parameters in the convolution operation. LeNet architecture was 

simple and linear, restricting its effectiveness to simple grayscale digit 

classification problems instead of generic image classification tasks. 

Krichevsky et al. proposed AlexNet architecture in 2012. It enhances the feature 
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extraction capability of CNN architecture by making it deeper into up to 8 

layers. However, as the depth increases, the number of parameters increases, 

making architecture more complex. Several problems arise with the complexity 

of architecture and smaller datasets, such as the overfitting and vanishing 

gradient. AlexNet solved the problem of overfitting up to some level by 

increasing the depth of the architecture using the concept of random skip 

connections. Additionally, it uses a ReLU activation function to reduce the 

vanishing gradient problem [50]. It uses a large filter size (11×11, 7×7, and 5×5) 

to improve the learning accuracy. 

Simon Yan et al. proposed a 19-layer deep architecture named VGGNet. The 

problem of AlexNet is complex heterogeneous filter size (7×7, 11×11, 5×5) in 

different layers of the CNN architecture. VGGNet architecture has solved this 

problem by keeping filter size 3×3 to make it homogenous. It improves the 

computation cost with similar accuracy by reducing the calculations involved. 

VGGNet became popular because of its homogenous structure. It also uses a 

new max pool operation in the pooling layer. VGGNet architecture resulted in 

improved performance concerning image classification tasks by incorporating 

a large number of parameters. It is still not suitable for low resource systems 

due to the involvement of increased computational cost. The number of 

parameters in VGGNet is approximately 138+ million, making it 

computationally high. To solve this problem, GoogleNet introduced a new 

inception block that replaced the existing convolution layer. It uses 1×1 

convolution to optimize the number of matrix multiplications. It also removes 

the fully connected layer and uses the concept of sparse connections with 

average pooling to reduce the number of parameters. It reduces the total 

parameters from 138 million to 4 million with promising efficiency. The main 

limitation of Google Net is the heterogeneous structure of the filters in the 

inception block. 

There was an early perception that the CNN architecture's depth closely 

correlated with the architecture's ability to learn. With the depth of architecture, 
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vanishing gradient problems arise. Therefore, training deep neural networks is 

challenging due to the vanishing gradient problem. The ResNet architecture was 

developed in 2016 to reduce the vanishing gradient issue with increased depth 

to solve that problem. In ResNet architecture, a residual block is introduced, 

employing the concept of skip connection. ResNet introduces a 50/101/152 

depth architecture that performs remarkably in the benchmark image dataset 

COCO [50]. However, due to the huge depth and complex architecture, the 

number of parameters increases linearly, not exponentially. As part of 

architecture design and to address the issue of vanishing gradients in deep CNN 

architectures, DenseNet [51] was proposed in 2017. The gradient propagation 

and classification accuracy are improved by creating shorter paths between a 

layer and its subsequent layer closer to the output. It is used to connect every 

layer with the next subsequent layers directly, which helps to concatenate 

features directly. Supposing L is the total number of layers in the architecture, 

then a total of L (L+1)/2 connections will be possible in the DenseNet. Table 

2.1 illustrates the comparative analysis of the performance of various CNN 

architectures designed manually. The Accuracy of the CNN architecture 

depends on numerous factors such as topology (convolution layers, pooling 

layers, and their interconnections) and learning parameters (including weight, 

bias, and hyperparameters like activation function, filters size, number of filters, 

and many more). 

  

 Figure 2.1 Comparisons of various CNN architectures under the ImageNet dataset 
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Table 2.1 Manually designed CNN architectures are compared based on parameters, 

accuracy and depth. 
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[44], 

1998 
LeNet 0.060 MNIST 0.95 5 

 First effectively designed 

CNN architecture in the real-

time data set. 

 Large filter sizes are used. 

[45], 

2012 
AlexNet 60 ImageNet 16.4 8 

 It increases the depth of 

architecture for real-time 

RGB ImageNet data set. 

 ReLU activation function is 

implemented for enhancing 

non-linearity. 

 Dropout function is applied 

to reduce the model 

complexity. 

[46], 

2014 
VGG 138 ImageNet 7.3 19 

 The architecture is made 

complex by increasing the 

number of parameters to 

enhance the accuracy. 

 Homogenous topology is 

observed throughout the 

architecture. 

 Filter Size is reduced to 

minimize the computation of 

the model. 

[48], 

2015 

GoogLe

Net 
4 ImageNet 6.7 22 

 It introduces the concept of 

blocks in the CNN 

architecture. 

 Apply network in network 

concept.  

 Used 1×1 convolutional filter  

[47], 

2016 
ResNet 

25.6  

1.7 

ImageNet 

CIFAR-10 

3.6 

6.43 

152 

110 

 Introduced skip connection to 

minimize the size of the total 

parameter.  

 Residual learning is used. 
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[98], 

2016 

Wide 

ResNet 
36.5 

CIFAR-10 

CIFAR-

100 

3.89 

18.85 

28 

- 

 The width of the architecture 

has been increased, resulting 

in a more complex 

architecture. 

[49], 

2017 
Xception 22.8 ImageNet 0.945 126 

 Convolution options are 

divided into two categories in 

this architecture. The depth-

wise convolution method is 

used first, followed by the 

point-wise convolution 

method. 

[101], 

2017 

Squeeze 

& 

Excitatio

n 

Network

s 

27.5 ImageNet 2.3 152 

 Used SE block before 

convolution layer to suppress 

less important feature. 

 Adapts the feature maps of 

each layer. 

[51], 

2017 

DenseNe

t 

25.6  

25.6 

CIFAR-10 

CIFAR-

100 

3.46 

17.18 

190 

190 

 Multiple layers are connected 

together for Cross-layer 

information flow. 

 The amount of feature maps 

at each layer has resulted in a 

significant rise in parameters.  

 Decision layers can access 

characteristics at both the low 

level and high level. 

15.3  

15.3 

CIFAR-10 

CIFAR-

100 

5.19 

19.64 

250 

250 

However, in Figure 2.1, the main concern is discussed that the association 

between accuracy with the number of parameters and the depth of CNN 

architecture is abrupt. Initially, from AlexNet to VGGNet architectures, the 

architecture complexity increased with depth, increasing the number of 

parameters. Therefore the vanishing gradient problem occurs. Due to the 

vanishing gradient, the model's accuracy is declining even with deeper and more 

complex architecture. ResNet and GoogleNet applied the skip connection 

concept that reduces the number of parameters and minimizes the vanishing 

gradient problem. Another concern is that the selection of parameters and their 

value is also challenging as the number of parameters is huge and different in 

nature. However, selecting parameters for the suitable architecture design is still 
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challenging. Manually identifying the appropriate number of parameters is 

extremely difficult as the number of parameters is huge, and its relationship with 

accuracy is uncertain. The metaheuristic optimization algorithms assist us in 

finding a suitable solution for the above problem as those algorithms are 

gradient-free and can escape to local optima. 

2.2 Hyperparameter Selection 

Despite the fact that CNN is quite powerful, its effectiveness or accuracy is 

dependent on the parameters selection. When selecting the convolutional neural 

network parameters, the optimal combination of several parameters is usually 

used. The CNN model's efficiency is determined by two major factors. The first 

is architecture selection, which includes architectural depth, the number of 

layers (such as a convolutional layer, pooling layer, fully connected layer, and 

their interconnection). Selection and initialization of hyper-parameters such as 

the number of kernels, kernel size, stride, padding, pooling operation, optimizer, 

activation function, number of hidden layers, dropout, batch normalisation, 

learning rate, loss function, embedding vector size, and epoch number are also 

essential. The kernel, a 2-D weight matrix, is used for feature extraction in the 

convolutional layer. The convolution process compresses the input matrix. To 

address these issues, we can add rows and columns to the input image before 

convolution, which is known as padding.  The amount of pixels we will jump 

when we convolve the filter/kernel is determined by stride, which we used when 

doing the convolution procedure. In addition to convolutional layers, pooling 

layers are frequently used by CNNs to reduce input size, accelerate 

computation, and strengthen some of the features it detects. We can use max, 

average, or min pooling operation in the pooling layer. After selecting CNN 

architecture (layers and their connection), a few other hyperparameters are 

required to set before training. The following are as follows: 
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2.2.1 Learning rate 

The optimization algorithm's learning rate determines how frequently the 

weight is updated. We can select a constant learning rate, a learning rate that 

gradually declines, momentum-based approaches, or adaptive learning rates 

depending on the optimizer we use. 

2.2.2 Number of epochs 

The number of epochs refers to how frequently the neural network processes 

the entire training data. We should increase the number of epochs as soon as 

there is a slight difference between the training and test errors. 

2.2.3 Batch size  

The batch size specifies how many samples will be sent over the network at the 

same time.  Large data sets necessitate slow CNN training.  As a result, it is 

necessary to seek a faster optimization technique. It is recommended that batch 

size should be a power of two to run code faster. 

2.2.4 Activation function  

The activation function of the model introduces non-linearity. Multiple 

activation functions, such as ReLU [21] in Eq 1, sigmoid [22] in Eq (2), tanh in 

Eq(3) [20], and others, are used in different layers of CNN architecture. The 

output of Relu lies in all positive value, sigmoid value lies in range (0,1) 

whereas tanh lies in range -1 to 1. Sigmoid function mostly uses in outer layer 

in binary classification problem where as relu and tanh uses in intermediate 

layers. 

𝑓(𝑥) = max(0, 𝑥)   … … … … … … … … … (1) 

                           𝑓(𝑥) = 1/(1 + 𝑒−𝑥)……………………. (2) 

                           𝑓(𝑥) = ((𝑒𝑥- 𝑒−𝑥)/ (𝑒𝑥+ 𝑒−𝑥))………….(3) 
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2.2.5 Number of hidden layers  

It is typically a good idea to keep adding layers until the test error stops 

improving. The trade-off is the cost of computationally training the network. A 

small number of units can result in underfitting, whereas a larger number of 

units is usually not hazardous with correct regularisation. 

2.2.6 Dropout  

The utilization of dropout [52] has emerged as a popular regularization 

technique in deep neural networks, serving the purpose of mitigating overfitting. 

This technique selectively eliminates neural network units based on their 

probability of removal. 

2.2.7 Optimizer 

Optimizers are algorithms or techniques that modify neural networks' weights 

and learning rates to minimize losses. Multiple optimization methods such as 

SGD [53], Adam [54], Adagrad [55], AdaDelta [56], or RMSProp [57] are used 

in CNN architecture. Adam is the most effective optimizer if one wants to train 

the neural network in less time and more efficiently. 

2.2.8 Loss function 

The disparity between the output generated by the Convolutional Neural 

Network (CNN) model and the desired output is quantified through the 

utilization of a loss function within a neural network. The gradients necessary 

for updating the weights can be derived from the loss function. The cost is 

calculated by computing the mean of all incurred losses. Within the context of 

Convolutional Neural Network (CNN) architecture, it is common to employ 

several well-known loss functions, namely Categorical Cross-Entropy [58], 

Sparse categorical cross-entropy [59], and Mean squared error [60]. 
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2.3  Data Preprocessing 

The complexity of the architecture and the input data impact how well CNN 

performs. Image preprocessing is needed before being used for model training 

to improve CNN learning. Images originate from several sources of different 

sizes and shapes. Making all images the same size is the initial step in data 

preprocessing. There are multiple methods of image preprocessing available 

such as transformation, normalization, and augmentations. Any image alteration 

in form and shape is referred to as morphological transformation. Erosion, 

dilation, opening, and closing are common morphological transformation 

methods. Normalization is another preprocessing method for rescaling the pixel 

value in a confined range. The purpose of doing this is to assist with the gradient 

propagation problem. Often, the amount of data we have is insufficient to 

accomplish training deep neural network models. In these situations, we 

undertake data augmentation to expand the dataset. Only the training set should 

be used for augmentation, and the validation set should never be used. 

Augmentation techniques [66] like flipping, rotating, cropping, translating, 

illuminating, scaling, and adding noise generate additional data from raw data, 

and significantly enhance the model's accuracy. 

CNN architecture solves image classification and segmentation problems in 

every domain. The model's accuracy depends on architecture selection and the 

dataset. If a fewer number of images, it may get stuck in underfitting. If the 

resolution is less, the feature may vanish with the depth of architecture. 

Therefore, we required high resolution, huge data size, with balance in every 

class for better performance. Some benchmark datasets developed to compare 

the performance are shown in Table 2.2 MNIST dataset was the benchmark 

dataset for digit classification. The MNIST dataset's complexity is less, so it can 

be easily computed with less computation power. It has ten classes with 

grayscale images having 60000 training data with pixel size 28×28.  
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Most models are used as a reference for MNIST until the 2012 ImageNet 

competition. After that, challenging datasets like CIFAR 10 for classification 

into ten classes and CIFAR 100 for classification into hundred classes are used. 

2.3.1 Dataset 

The CIFAR10 dataset depicted in Figure 2.2, in particular, serves as a 

benchmark for image classification, classifying ten different types of natural 

objects, including birds, horses, ships, deer, frogs, dogs, trucks, cats, vehicles, 

and aeroplanes. It comprises 60,000 RGB images, each 32×32 pixels in size. 

Furthermore, there are 50,000 images in the training set and 10,000 in the testing 

set. There are the same amount of images in every category. Similarly, the 

MNIST dataset, shown in Figure 2.3 is a benchmark for image classification for 

identifying digits. It has 70,000 grayscale pictures in total, each measuring 

28×28 pixels. Furthermore, the training set consists of 60,000 images, and the 

testing set contains 10,000 images. The amount of data in each category is the 

same. Also, we used Fashion_MNIST dataset Figure 2.4, as a benchmark for 

fashion image classification. It has 70,000 grayscale pictures in total, each 

measuring 28×28 pixels. It was created in 2017 and had ten classes. 

Furthermore, the training set consists of 60,000 images, and the testing set 

contains 10,000 images. The amount of data in each category is the same. 

 

Figure 2.2 Examples from CIFAR-10 data sets 
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Figure 2.3 Examples from MNIST data sets 

  

Figure 2.4 Examples from Fashion_MNIST data sets 

Table 2.2 Dataset used in different manual and automatic CNN architecture for Image 

classification 

Data set 
Input size 

(Pixels) 

No. of 

classes 

No. of 

training 

images 

No. of 

testing 

images 

Image 

type 

MNIST [3] 28 × 28 10 60,000 10,000 Grayscale 

CIFAR-10 [2] 32 × 32 10 50,000 10,000 RGB 

CIFAR-100 [2] 32 × 32 100 50,000 10,000 RGB 

ILSVRC 2012 [61] 224 × 224 1000 1.3M 1,50,000 RGB 

Fashion MNIST [62] 28 × 28 10 60,000 10,000 Grayscale 

2.4  Optimization algorithms 

An optimization can be a minimization or maximization issue of any given 

function in the defined search space. Numerous categories exist for classifying 

optimization algorithms, including gradient-based and gradient-free algorithms, 
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deterministic and stochastic algorithms, trajectory-based algorithms, and 

population-based algorithms. Gradient-based algorithms make extensive use of 

derivative information to solve differentiable and convex optimization 

problems. When functions have discontinuities or multiple local optima exist, 

the gradient-based method is ineffective. For optimizing discontinuous 

functions, metaheuristic algorithms are more feasible. However, metaheuristic 

algorithms have some limitations. It is appropriate to find good answers to 

complicated optimization problems within given constraints, but finding 

optimal solutions is not guaranteed. There exists no known mathematical model 

that can solve all types of optimization problems with improved accuracy. For 

example, structure optimization [63], traveling salesman problem [64], 

Hamiltonian cycle problem [65], and the halting problem of the Turing machine 

[66] are some known as NP-complete problem, which is not solvable in 

polynomial time using a deterministic algorithm. Therefore, approximation 

algorithms based upon intelligent search are proposed to suggest the correct 

solution to a particular NP-complete problem. 

The parameters chosen and optimized have an impact on how well the CNN 

architecture operates. Because CNN includes many parameters with different 

properties, we require optimization methods that can handle both discrete and 

continuous variables. The metaheuristic algorithms are classified into two 

categories population-based and nature-inspired as shown in Figure 2.5. Any 

metaheuristic algorithm will typically consist of two main parts: intensification 

and diversification. While diversification by randomness enables the search to 

stray from local optima, the best solutions are chosen to guarantee that solutions 

will converge to the optimum. 

Approximation algorithms start with an initial guess and generate an iterative 

sequence with improved results. It uses an objective function to mathematically 

optimize the given problem with bounded variables and their condition until 

they terminate. The termination condition is based upon the generation number 

or target value. The optimization strategy moves from one generation to another 



23 

 

based on the suggested optimization algorithm. Most of the strategies use the 

objective function's value to calculate the solution's fitness value, subject to the 

constraint functions. Approximation algorithms run based on information 

gathered from the current generation as well as the previous generation. The 

approximation algorithm begins with a random value and generates the 

sequence of solutions 𝑥0 , 𝑥1 … … , 𝑥𝑘   such that 𝑓(𝑥𝑖+1 ) < 𝑓(𝑥𝑖).  

 

Figure 2.5 Classification of metaheuristic approach of optimization 

Many meta-heuristic algorithms [67-68] have been proposed to solve hard 

mathematical problems in recent decades. The growing power of meta-heuristic 

algorithms attracted the attention of researchers. Evolution Algorithms [69-73] 

and Swarm Intelligence [74-76] are four broad categories of meta-heuristic 

algorithms shown in Figure 2.6. Evolution algorithms are inspired by biological 

evolution; their formulation is based upon selection, recombination, and 

mutation. At the same time, swarm intelligence is based upon swarms' collective 

and independent behavior. Swarm intelligence is a concept that draws 

inspiration from the intelligent behavior exhibited by swarms. In this paradigm, 

swarms are capable of collectively identifying solutions by using both local and 

global best positions, and their velocity is based on distance from the actual 

object. 
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Figure 2.6 Categories of evolutionary algorithms regarding the search strategies 

Evolutionary algorithms are used to solve gradient-free optimization problems. 

It can also be used in a single objective and a multi-objective problem. We 

discussed some algorithms with their domain used in optimizing CNN 

architecture based on literature as follows: 

2.4.1 Genetic Algorithm 

A genetic algorithm (GA) [77] is a subset of evolutionary algorithms helpful for 

solving multidimensional nonlinear problems. GA is inspired by biological 

evolution, and its formulation is based upon selection, recombination, and 

mutation operations. A selection operation is defined as selecting a set of an 

individual based on a fitness value where a fit individual has more probability 

of being selected. Recombination or crossover is an operation to generate a new 

individual by recombining two or more individuals based on some 

recombination rule. The mutation is a process of introducing diversity in the 

solution set by generating some set of values around the selected point. GA 

works by applying “random” changes to current solutions to generate new ones. 

A fitness function is used to select the best parameters, and solutions 

representing the higher fitness value are chosen. GA can initialize its population 

randomly with different positions and start optimizing in multiple directions, 

making it suitable for multiple-minima problems. It can also help solve the brute 

force approach and NP-hard problems. The major drawback of this algorithm is 

that it does not guarantee the optimal solution but is close to the optimal one.  
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Additionally, its convergence rate becomes slower when it is closer to the 

optimal solution. Nowadays, GA has become extremely popular because of the 

neural networks, as the convergence rate of neural networks is slow due to 

gradient-decent problems. Moreover, it is likely to stick in local minima due to 

multiple minima where GA can help solve the problem. Figure 2.7 represents 

the flow chart of the Genetic Algorithm. In the flow chart, different operations 

like initialization, mutation, and crossover are represented as square boxes, 

where stopping criteria are defined in a rectangular box. 

 

Figure 2.7 Flow chart of genetic algorithm 

2.4.2 Particle Swarm Optimization (PSO) 

In the Particle Swarm Optimization (PSO) algorithm, each particle is initially 

assigned a position and velocity. These values can be modified over the iterations 

of the algorithm, depending on the number of iterations. The rate of change is 

contingent upon the local acceleration constant 𝑐𝑝 and global acceleration 

constant 𝑐𝑔 shown in Eq.1. Another parameter 𝑉𝑖
𝑡+1 represents velocity in the next 

iteration, 𝑤 is the weight value, 𝑟𝑝 represents the random value for local 

convergence in the range [0, 1], similarly, 𝑟𝑔 represents global randomly generated 



26 

 

value in the range [0, 1] shown in Eq.1. As shown in Eq.2, variable 𝑝𝑖
𝑡+1 represents 

the position vector that is updated with the previous position and current velocity. 

The 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
 represents the local best position whereas 𝑔𝑏𝑒𝑠𝑡𝑖𝑑

 is the global best 

position vector. Additionally, as shown in Eq.3, 𝑤(𝑖𝑡𝑒𝑟) is an adaptive weight 

value that is bounded in the given range [𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥]. The 𝑤𝑚𝑎𝑥 is the maximum 

weight value, 𝑤𝑚𝑖𝑛 is the minimum, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum iteration defined 

and 𝑖𝑡𝑒𝑟 is its current iteration. Our target is to reach the global best from the local 

best in a minimum number of iterations. 

𝑉𝑖
𝑡+1 = 𝑤 × 𝑉𝑖

𝑡 +  𝑐𝑝 × 𝑟𝑝  × (𝑝𝑏𝑒𝑠𝑡𝑖𝑑
− 𝑝𝑖

𝑡) +  𝑐𝑔 × 𝑟𝑔  × (𝑔𝑏𝑒𝑠𝑡𝑖𝑑
𝑝𝑖

𝑡)           (1)   

𝑝𝑖
𝑡+1 = 𝑝𝑖

𝑡   + 𝑉𝑖
𝑡+1                                                                                                    (2) 

𝑤(𝑖𝑡𝑒𝑟) = (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) × (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) +  𝑤𝑚𝑖𝑛                                 (3) 

2.4.3 Differential Evolution (DE) 

Differential evolution (DE) [78] is a heuristic technique that allows nonlinear 

and non-differentiable continuous space functions to be globally optimized. The 

advantage of DE algorithms is simplicity and few control variables that need 

minimal controls to direct the minimization. It has good convergence qualities 

or the global minimum's constant convergence in successive independent trials. 

The classic differential evolution (DE) algorithm requires only three control 

parameters: the scale factor, crossover rate, and population size. Here, an initial 

population of real-valued decision vectors commonly referred to as 

chromosomes are randomly chosen to start the process. In DE, the mutation 

operator is used to produce new suitable solutions during each iteration.  

Additionally, the crossover technique is used to expand the diversity of the 

modified parameter vectors. 

2.4.4 Genetic Programming (GP) 

Genetic programming (GP) [71] uses an algorithm that uses crossover, random 

mutation, a fitness function, and several generations of evolution to solve the 
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optimization problem.  This algorithm is inspired by biological evolution and 

its basic mechanics. A genetic program is represented as a tree structure of 

actions and values, which is commonly referred to as a hierarchical data 

structure. In the field of Genetic Programming (GP), the procedures entail the 

selection of the most optimal programs for crossover reproduction and 

mutation, guided by a pre-established fitness measure that is often proficient in 

the desired task. In the field of genetic programming (GP), the crossover 

operation is employed to generate new and distinct children by exchanging 

random segments between selected pairs of parents. These offspring thereafter 

contribute to the formation of the next generation of programs. Mutation is the 

term used to describe the process of substituting a randomly selected component 

within a program with another randomly selected component. In the field of 

Genetic Programming (GP), the subsequent generation emulates certain 

programs from the present generation that were not selected for reproduction. 

Subsequently, the succeeding iteration of programs undergoes cyclic selection 

and other related procedures. 

2.4.5 Evolution Strategies (ES) 

Evolution strategies (ES) [70] is a subclass of Evolutionary Algorithms that are 

nature-inspired direct search and optimization methods. It employs mutation, 

recombination, and selection on a group of individuals with candidate solutions 

to develop better solutions iteratively. In contract to optimization, ES is great 

for non-linear or non-convex continuous optimization issues. Compared to other 

evolutionary algorithms, population sizes in ES are extremely small. The 

effectiveness of an evolutionary strategy (ES) in addressing a certain problem 

type is significantly influenced by its design of the ES-operators used, such as 

mutation, recombination, and selection, as well as how the ES-operators are 

altered during the evolution process. 
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2.4.6 Evolutionary Programming 

Evolutionary programming [79] is one of the evolutionary algorithms that 

allows the numerical parameters of the program to evolve while keeping the 

program's structure constant. In contrast to conventional genetic algorithms, 

evolutionary programming focuses on individual behaviors; therefore, the 

crossover is not used in favor of mutation. The only way to produce individuals 

is to mutate their parents, and the behavior is defined by the degree of the 

mutation. Instead of using raw fitness value, relative fitness value is utilized to 

quantify how much better a person performs than those around them. The most 

frequent applications of evolutionary programming are in constrained settings 

like scheduling and routing, power systems, and system design. 

2.5  Evolving CNN Architecture using Evolutionary Algorithms 

The evolution of CNN architecture begins with layered architecture increases 

as per the improvement of computation power, datasets, and transformation of 

technologies. The performance of CNNs depends on their topology selection, 

selection of parameters, and training methods. In the early stages, the majority 

of architectural designs were mostly developed through manual processes, 

drawing inspiration from the problems posed by ImageNet. Nevertheless, the 

NP-hard problem [26] poses a significant challenge in manually determining 

the ideal parameters and their corresponding values in convolutional neural 

networks (CNNs). The development of a suitable architecture requires a 

substantial level of competence in the pertinent field, along with the application 

of an iterative approach for parameter selection. In recent years evolutionary 

algorithms have helped in designing efficient CNN architectures automatically. 

As shown in Figure 2.9, the evolution of architecture is divided into four 

categories. Experts designed the initial state-of-the-art architecture. However, 

after using evolutionary algorithms, its performance improved.   As 

computation resources are affordable, deep learning-based models have become 
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popular in multiple image classification and segmentation domains, such as 

medical, agriculture, defense, engineering, and many others.  

 

Figure 2.8 GA, particle swarm optimization (PSO), genetic evolution (GE), genetic 

programming (GP), evolution strategy (ES), differential evolution (DE), memetic 

algorithm (MA), and others that do not suit these categories[4].  

The CNN model comprises topology selection, hyperparameter selection, 

variable initialization, and training. In topology selection, we need to identify 

basic building blocks such as pooling, convolutional, and fully connected and 

their interconnection. Hyperparameter selection consists of variables like 

learning rate, dimension, number of filters, pooling operations, and optimizer 

for the specific problem domain. In variable initialization, step initialization of 

learning parameters like filter values and weights in fully connected layers. In 

training filters, values are updated based on the feed-forward network with the 

multiplication of the learning rate. The hyperparameter selection in CNN is a 

complex task consisting of multiple feasible output solutions. Therefore, 

evolutionary algorithms can resolve the problem of multiple local optima and 

non-linear behavior of the parameters. 

There are multiple evolutionary algorithm-based architectures are used for 

designing and training an optimal CNN architecture as shown in Figure 2.8 [4]. 

Evolutionary algorithms are population-based algorithm that works by selecting 

only a fit population for reproducing a new set of the population for the next 
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iteration. The components of evolutionary algorithms based on their biological 

behavior must be designed by considering the problem domain. 

 

Figure 2.9 Evolution of deep CNN architecture 

The effectiveness of the algorithm depends on the representation of components 

and their operators. For example, In GA, we have to redefine mutation and 

crossover operators based on the encoding scheme and fitness function. GA can 

be used for topology selection, training, and selecting hyperparameters, 

including filters, filter size, and the number of layers. The fitness function can 

be used to select the parameters which can be effectively applied to the CNN 

architecture. Figure 2.10 shows the methodology for using evolutionary 
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algorithms in different steps of architecture selection. It starts with encoding 

representation that identifies the number of variables used to represent CNN 

architecture. That encoded architecture is passed along with the dataset to 

evolutionary algorithms. The evolutionary algorithm used the initialization 

method and passed decoded architecture with the dataset for training. After 

training, it is passed to the fitness function defined for the decision of whether 

the output is suitable for the next evolution process or discarded. After that, 

multiple operators are defined based on encoding to find suitable architecture. 

The process will continue till the maximum limit is reached. The selection of 

fitness function and maximum limit mostly regulate the computation power. 

 

Figure 2.10 Methodology to represent CNN parameters selection using evolutionary 

algorithms and input data set 

2.5.1 Encoding Scheme 

To represent CNN architecture using evolutionary algorithms, we need an 

encoding method to represent the CNN architecture and pass in the evolutionary 

algorithm as input to test their effectiveness. Based on the literature, the 

encoding schemes are either fixed length or variable length. In the fixed-length 

encoding technique, the maximum depth of architecture is fixed. This technique 



32 

 

is easy to implement, but it does not generalize the exploration. In Figure 2.11 

example of fixed length encoding is explained. In Figure 2.11(a), two different 

chromosomes of 8 lengths represent CNN architecture where each chromosome 

is the combination of 3 units of convolutional layers, two units of pooling layers, 

and three units of fully connected layers present. In Figure 2.11(b) crossover 

operator is explained and in Figure 2.11(c) final output of the newly generated 

population is there. In dynamic encoding representation, we need to identify 

basic building blocks of CNN architecture, such as a convolutional layer, 

pooling layers, fully connected layers, and their interconnection. Each layer is 

represented by a few variables based on the applied encoding technique. 

Encoding of entire architecture is comprised of multiple small stages. Each 

stage is a different combination of basic building blocks.   

 

Figure 2.11 An example of CNN architecture representation using a fixed-length 

encoding scheme. The length of the chromosome is 8 and the mutation and crossover 

operator is defined to regenerate a new population of the same length [4]. 

In variable-length encoding representation depth of architecture is flexible. It is 

a more stretched encoded representation of CNN architecture. In variable-length 
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representation, it is complex to define operators that make the population more 

diverse as compared to fixed-length representation. Figure 2.12 shows the 

different encoding representations. In Table 2.3, we compared different 

encoding representation techniques along with the methodology to decode and 

pass in evolutionary algorithms. Genetic NN used fixed-length binary encoding 

representation. It explains the interconnection between different layers of layers 

using 0 and 1 but is unable to justify the parameters within the layer. In CGP 

encoding 1st part represent the type of block and remaining two fields represent 

start and end node of architecture. In GACNN The architecture is represented 

by a concatenated block of a convolutional layer and a fully connected layer. 

The CNN-GA architecture is using variable length encoding, but due to huge 

parameters it computation cost increases with the depth of architecture. Also in 

AECNN three basic building blocks are used - DBU (Dense Block Unit), RU 

(ResNet Block), and PU (Pooling Unit). Due to fixed architecture its 

computation cost is less but in this representation modification of block is not 

possible that restrict to explore CNN architecture effectivly. We compared the 

number of chromosomes to represent the architecture with their complexity and 

diversity. If we use less number of chromosomes to represent, then the 

homological structure will be generated and stuck in local optima. If we use a 

different encoding for each encoding, then the overall computation cost will be 

very high. So based on the summary, it is observed that we need an encoding 

that can generate diverse architecture with demised computation cost. 
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Figure 2.12 Block diagram of the encoding representation of CNN architecture in 

literatures reviewed; (a) GACNN [5], (b) CGP-CNN [6], (c)  CNN-GA [1], (d) 

Genetic CNN [7] 

Table 2.3 Methodology used to represent CNN architecture in existing encoding 

techniques 

Model Encoding 

Representation 

Methodology 

Genetic 

CNN, 2017 

[7] 

 

 

 

0-01-100 

1. Existing architecture is divided into stages, 

where each stage is connected using binary 

encoding in increasing order. 

2. The first '0' in the encoding representation 

indicates that stage 1 and 2 have no connection. 

The number '01' indicates that stage 3 is linked to 

stage 2 but not to stage 1. '100' indicates that 

stage 4 is directly connected to stage 1, but not to 

stages 2 or 3. 
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CGP-

CNN, 2017  

[6] 

 

 

 

C3 1 2 

 

 

1. Each node is divided into three blocks, with the 

first representing the operation field and the rest 

representing interconnection from the previous 

block.  

2. The operations are defined as convolution, 

pooling, sum, and output. 

3. Input layer defines the integer value of the 

previously connected input nodes. 

4. Concatenated layers represent the entire 

architecture. 

GACNN, 

2019  

[5] 

 

 

 

 

C

1 

C

2 

L

1 

L

2 

1. The architecture is represented by a concatenated 

block of a convolutional layer and a fully 

connected layer.  

2. In the given encoding- c1, c2 are convolution 

layers with different filter sizes. A fully 

connected layer is represented by L1 and L2.  

3. Pooling layer is not defined as it is fixed after 

each convolution block with max pool operation. 

 

CNN-GA, 

2020 

[1] 

 

32-64-0.2-64-256 

1. CNN architecture is encoded into a string of 

decimal and fractional values. Two continuous 

decimal numbers represent the filter size of the 

convolutional layer and the fractional value 

represents the pooling layer. 

2. If the fractional value is less than 0.5, then mean 

pool otherwise max pool operation is used. 

AE-CNN 

[72] 

1 Type=1 

5,128,64,20 

 

1. Three basic building blocks are used - DBU 

(Dense Block Unit), RU (ResNet Block), and PU 

(Pooling Unit). 

2. Variable length encoding is used. 

3. Length is dynamic, which extends with a random 

selection of building blocks. 

Sinha et al 

[14] 

 

4 8 8 2 
1. Four parameters are used- image size, filter size, 

number of filters, and architecture depth.  

2. In this example, 9 bits are used to represent the 

entire architecture, 2 bits for each of the four 

possible image sizes, 3 bits for each of the eight 

different filter sizes, 3 bits for the number of 

filters, and 1 bit for each of the two possible 

depths. 

2.5.2 Designing and training of CNN architecture 

The complexity of CNN architecture plays an important role in learning 

complex features from training datasets. However, the difficulty of architecture 

increases with the depth of the architecture as well their interconnection. In 

addition to the depth, the number of parameters also increases. As a result, 

determining a sufficient depth with proper interconnection for any dataset is 
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difficult, which is addressed by evolutionary algorithms. Genetic CNN [7] is 

used to explore the CNN structure automatically. In this algorithm, a fixed-

length binary encoding scheme is used to represent CNN topology. The 

convolution layer and pooling layer are used as a basic building block of CNN. 

The Fully connected layer is not included in this representation. The entire 

architecture is divided into S stages, and in each stage, Ks convolution blocks 

are present in an ordered fashion, and only the lower number block is connected 

with, the higher number block. In training, architectures are trained from 

scratch, and the value of all hyperparameters is fixed throughout training. Then 

architectures are compared among each other, and the optimum architecture is 

identified. Now optimal architecture is compared with existing architectures 

state of the art with benchmark data sets like MNIST, CIFAR-10, and 

ILSVRC2012 [61]. This algorithm is not able to explore a lot of network 

structures because of the fixed-length encoding scheme.   

In AE-CNN [80], GA is automatically used to design CNN architecture. This 

algorithm uses ResNet and DenseNet blocks as the basic building blocks. In the 

ResNet block, three convolution layers are connected using skip connections. 

In the dense block, four convolution blocks are present, where the individual 

block is connected to the rest of the blocks directly. The max pool and avg pool 

operations are chosen randomly in the pooling layer. Afterward, new crossover 

and mutation operators are designed according to the encoding scheme. This 

algorithm has shown significantly improved performance compared to the rest 

of the manually and automatically designed architectures. The state-of-the-art 

benchmark datasets such as CIFAR-10 and CIFAR-100 are used for comparing 

the architectures resulting in reduced training time with similar algorithms. 

Cartesian genetic programming (CGP-CNN) [6] was presented to create CNN 

architecture automatically based on genetic programming [81]. This method 

uses a direct encoding scheme to represent CNN blocks and their connectivity. 

The benefit of this representation is that the depth of architecture is flexible and 

easy to implement skip connection also. It uses fixed block size to reduce the 
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search space of architecture. In CGP encoding scheme, a direct acyclic graph is 

used to represent nodes and their interconnection. The mutation operator is used 

to replace unproductive nodes to evolve the architecture. This method uses 

parallel processing to reduce training expenses. This algorithm is tested on 

CIFAR-10 data set with a batch size of 128. It uses Softmax cross-entropy and 

Adam optimizer for computation efficiency. 

To optimize the CNN architecture, it took about 14 days by CGP-CNN 

(ResNet). In the context of limited data, the author's approach is compared to 

VGG and ResNet. It has been noticed that VGG and ResNet models were found 

to be insufficient for handling tiny datasets, as they were primarily developed 

to perform optimally with large-scale datasets. Simultaneously, the CGP-CNN 

(ConvNet) and CGP-CNN (ResNet) models possess the capability to adjust 

their architectural configurations in accordance with the amount of the dataset. 

The optimization process for the design of CGP-CNN (ResNet) with limited 

data required a duration of five days. The proposed method can automatically 

make CNN architectures that are competitive and, in some cases, maybe better. 

This method has some shortcomings; it requires higher computational cost and 

time. Thus, the future work that can explore is to develop evolutionary 

algorithms that can reduce the computational cost. Another future work can be 

done to use this proposed method on different image datasets and tasks. 

EvoCNN (Evolving Convolutional Neural Network) [82] is used to create an 

efficient algorithm for evolving an efficient architecture and automatically 

deciding the values of CNN weights. The authors specified many goals for 

building this system, such as developing a gene encoding technique and a 

weight initialization strategy. They also proposed a few operators to exceed loss 

function convergence. They proposed a fitness function with a minimized 

computing cost. They compare the proposed method and find that it outperforms 

the existing methods. The gene encoding strategy requires the basic layers of 

CNN to be encoded in one chromosome because the length of the gene was 

unknown before the architecture development. It is very suitable for the 
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proposed method. As the performance of CNN is affected by the length of 

genes, EvoCNN has a better chance of reaching the best possible solution. To 

enhance comprehensibility, it is common practice to partition each chromosome 

into two distinct sections. The initial section encompasses the convolution layer 

and pooling layer, while the subsequent section encompasses the fully linked 

layer. 

According to the length required, the chromosome is made, and the layers are 

attached. After making all possible combinations of layers, chromosomes are 

developed, and each goes through fitness evaluation. Parent solutions are found 

in the fitness evaluation test according to quantitative measures. This evaluation 

of each individual has two parts. The first is to train the CNN and the second is 

to calculate the fitness accuracy. During the preparation, first and foremost, each 

CNN is decoded dependent on the data addressed. Also, the loads concerning 

the convolutional layers and the completely associated layers depend on the 

Gaussian distribution by using the comparing mean and standard deduction 

encoded in the person. 

Additionally, the CNN is prepared with the predetermined maximal ages with 

the clump information in the preparation set. The standard binary tournament 

selection is modified for this method. This method uses two sets of comparisons 

to select parent solutions. The comparison between mean values and the 

parameter numbers are the two comparison sets. If an individual is not selected 

through this method, the parent with a smaller standard deviation is selected. 

These comparisons are performed iteratively, and a set of selected parents is 

made. The offspring are created using genetic algorithms. At first, two random 

parent solutions are selected from the set; then, offspring are generated using 

the crossover operator. After that, the mutation operator is used, offspring are 

stored, and parents are deleted. This process continues till the parent set gets 

empty. Toward the finish of development, various individuals could have good 

mean values; however, various architectures and associations weight 

introduction values. There will be various decisions in choosing the "Best 
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Individual" in such a manner. For instance, if we are just worried about the best 

execution, we could disregard their design setups and think about just the 

classification accuracy. Something else, if we accentuate the more modest 

number of boundaries, relating choice could be made. When the "Best 

Individual" is affirmed, the comparing CNN is decoded dependent on the 

encoded design and association weight introduction data. Afterward, the 

decoded CNN will be profoundly prepared with a bigger number of ages by 

SGD for future use. Note that a ReLU non-linear layer is added to each 

convolutional layer and a complete association layer while interpreting the 

person to the comparing CNN. 

This proposed method, EvoCNN, is compared with the best ten peer 

competitors, and the result shows that it outperforms all of them. Two state-of-

the-art algorithms, GoogleNet and VGG16, have around 6.5% error rates, while 

EvoCNN achieved 0.83% to 5.47. EvoCNN performed equally in the mean 

performance to the two best algorithms, and EvoCNN has a smaller number of 

connection weights training epochs. This method promises much better 

performance because it evolves automatically in both the aspects of initial 

connection weights and the architecture. In further experiments, it is found that 

the EvoCNN method does not heavily rely on computing resources. It helps 

researchers without extensive expertise to create simple yet effective CNN 

models. EvoCNN was compared on nine benchmarks with 22 peer competitors. 

The results show that it outperforms all of them in classification performance. 

Using a smaller number of parameters, resulting in the least classification error 

rate, and using limited computational capacity and battery power shows that it 

can provide better choices to smart market devices willing to integrate CNN. 

The algorithm CNN-GA [1] uses a variable-length encoding scheme to explore 

the depth of CNN topology. To efficiently search the search space and describe 

the encoding scheme, a modified crossover operator is also suggested. Skip 

connection is incorporated to deal with the data complexity problem and reduce 

the vanishing gradient. The author proposed an asynchronous parallel 
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computation method to reduce the computation cost, which effectively utilizes 

computational resources. A novel catch component is introduced to reduce the 

fitness evolution costs by removing the overlapping computation. Each building 

block is designed in this encoding scheme using a skip layer and a pooling layer. 

The skip layer is a technique in which two convolutional layers are 

interconnected using a skip link. In the convolutional layer, the filter size of 3×3 

and stride of 1×1 are set. In the pooling layer, the filter size is set to 2×2, and 

max/avg pooling operations are used. 

In this technique, the fully connected layer is not used to reduce the search space 

for finding suitable architecture. Fitness values are calculated by training 

individual architecture using a given dataset. In this algorithm, cache is 

introduced to store the fitness value of evaluated individual architecture. This 

approach reduces the redundant calculation of individuals if it is already stored 

in the cache system. Based on the fitness value, vulnerable populations are 

eliminated. It is used to generate a new set of the fit population from the existing 

population using biological operators such as mutation and crossover. Mutation 

and crossover operators must be defined according to input data and fitness 

functions. This algorithm redesigned the crossover operator for unequal-length 

input strings, which improves architecture search. In this algorithm, multiple 

mutation operators are defined, such as adding or removing skip and pooling 

layers or randomly changing the building block parameter. 

The mutation operator is employed to determine the optimal depth of an 

architecture. The efficacy of the CNN-GA algorithm is verified through 

experimentation on the CIFAR-10 and CIFAR-100 datasets. The results of this 

experiment indicate that the CNN-GA model exhibits superior performance in 

terms of accuracy and optimality compared to both manually-made CNNs and 

the hybrid automatic+manually constructed CNN. The CNN model developed 

by CNN-GA has a reduced parameter count in comparison to alternative CNN 

models. The CNN-GA approach requires fewer processing resources compared 



41 

 

to the majority of automatic and automatic+manually built convolutional neural 

networks (CNNs). 

 

Figure 2.13 Comparison of evolutionary CNN architecture under CIFAR-10 dataset 

using genetic algorithm 

We compared the recently developed evolutionary algorithms-based CNN 

architecture as shown in Figure 2.13. The CIFAR-10 dataset was employed by 

the author as a benchmark for evaluating the performance of a genetic algorithm 

With regards to precision and the quantity of variables. In this comparative 

analysis, it is observed that the CGP-CNN model has a lower parameter count, 

whereas the CNN-GA model demonstrates superior accuracy levels despite 

having similar parameter quantities. 

In Table 2.4, we discuss the design of CNN architecture using evolutionary 

algorithms and compare it with the benchmark data set. This table compares 

most of the architecture designed based on genetic algorithms. A genetic 

algorithm is suitable to optimize non-linear parameters such as depth and width 

of architecture. The total parameters are proportional to depth, width, and 

interconnection. The complexity of the model and the number of parameters 

also depend on dataset complexity. So to implement CNN architecture using 

evolutionary algorithms, different encoding techniques are discussed in this 

table, performance is compared, and relevant gaps are identified. The 

performance is compared based on accuracy, the number of parameters and 

training cost, and processing power. 
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Table 2.4 Comparisons of recent evolutionary architectures based on CIFAR-10, 

CIFAR-100, and MNIST datasets. 
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 [7] 
Genetic 

CNN 

MNIST 99.66  

 

Titan

-X 

 -  - 50  
1. Fixed-length 

binary encoding 

scheme is used. 

2. Existing 

architecture is 

represented using 

the different 

connections of 

convolutional 

layers. 

3. All convolutional 

layers have the 

same number of 

filters. 

4. Encoded 

architecture is 

initialized using 

the Bernoulli 

distribution. 

CIFAR-10 77.06 17  - 50 

ILSVRC 

27.87 

(error) 

 -   50 

[82] 
 EVO 

CNN 

Fashion 

benchmark 

dataset 

5.47 

- 

 - 6.68 100 

1. Use of a smaller 

dataset; the model 

is not tested on a 

large dataset. 

2. Three basic 

building blocks 

like convolution 

layer, pooling 

layer, and fully 

connected layers 

are used. 

3. Mean and standard 

deviation of 

weight values are 

used for 

initialization. 

[1] CIFAR 100 20.85 36 5.4  - 
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CNN-

GA 

CIFAR 10 96.78 Nvid

ia 

Gefo

rce-

GTX 

1080 

Ti 

35 2.9  - 
1. Initialization is 

done using normal 

distribution. 

2. Fixed length 

encoding scheme 

is used. 

3. Semi-folded 

architecture 

reduces the 

number of 

comparisons in 

chromosome 

labels. 

4. Pooling is not part 

of the proposed 

encoding 

representation. 

5. Not able to justify 

skip connection in 

this encoding. 

CIFAR 100 79.47 40 4.1  - 

[6] 
CGP-

CNN 
CIFAR 10 94.02 

Nvid

ia 

Gefo

rce-

GTX 

1080 27 1.68  - 

1. This 

representation is 

unsuitable for 

representing 

complex 

architectures 

because it only 

uses two fields for 

concatenation. 

2. Exploration is 

limited due to the 

limited number of 

pooling and 

convolution 

layers. 

3. The number of 

nodes ranges from 

10 to 50. 

 [80] 
AE-

CNN 
CIFAR 10 4.3 

- 

27 2  - 

1. ResNet and 

denseNet blocks 

are considered 

basic building 

blocks, or a 

combination of 

these blocks is 

considered a basic 

block. 

2. Genetic algorithm 

is used to optimize 

the architecture. 
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2.5.3 Hyperparameter optimization 

Selection and initialization of hyper-parameters are critical in finding optimal 

structures. The utilization of this method contributes to the mitigation of training 

expenses and facilitates the attainment of the global optima at an accelerated 

rate. The quantity of hyper-parameters in intricate structures is substantial, 

therefore, it is difficult to initialize them manually. For instance, the AlexNet 

model has 27 hyperparameters, VGG Net has 57 parameters, GoogleNet has 78 

parameters, ResNet-52 has 150 parameters, and DenseNet has 376 

hyperparameters. Therefore, it is almost impossible to identify the suitable 

combination of parameters manually. The selection of optimum parameters is 

an NP-hard problem, and researchers are examining a metaheuristic solution for 

such problems. Many genetic algorithms, swarm intelligence, and evolutionary 

algorithms are used to solve this problem.  

Swarm intelligence is used to solve such nonlinear, multidimensional 

hyperparameter selection problems. Talathi (2019) introduced a novel approach 

known as sequential model-based optimization (SMBO) for the purpose of 

selecting hyperparameters in deep convolutional neural networks (CNNs) [19]. 

In this methodology, the author has taken into account a limited number of 

parameters across various layers. These parameters include the quantity of 

convolutional layers, the quantity of filters within each layer, the size and stride 

of the filters, the inclusion of normalization layers, the configuration of pooling 

layers (including size, stride, and type of pooling, whether max or average), the 

number of hidden layers, the number of nodes within each hidden layer, and the 

specified dropout value. In this model p- ReLU (parametric rectified nonlinear 

unit) activation function is used. The overall model is tested on the CIFAR-10 

dataset, and a 6.9% mean error is obtained. Toshi et al. proposed a PSO-based 

hyperparameter selection algorithm that improved classification accuracy [14]. 

In this analysis, the author chooses a few input parameters such as image size, 

filter size, number of filters, and depth of the architecture. Each parameter has 

a range of discrete values, out of which a suitable one is considered. This model 
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uses four possible image sizes, eight different filter sizes, and two different 

architectures consisting of 11 and 13 layers. This model is trained using CIFAR-

10 and RSVD datasets. RSVD is the author's self-created dataset consisting of 

653 images and seven classes of road, green grass, brown grass, soil, sky, leaf, 

and tree stem. PSO is applied to identify the most suitable architecture providing 

an accuracy of 88.3% in RSVD and 81.47 in the CIFAR-10 dataset. 

Another PSO-based algorithm known as canonical PSO (cPSO-CNN) was 

introduced for optimizing CNN parameters [83]. This used compound normal 

distribution to improve the exploration capability of CNN. It uses a new 

prediction model to reduce the cost of the fitness function. The cPSO-CNN 

architecture was compared with existing architecture such as AlexNet with the 

CIFAR-10 dataset, and performance was improved. 

Table 2.5 Performance comparison of CNN hyperparameter optimization using 

evolutionary algorithms 
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[19] SMBO 

1. Number of layers 

2. Number of filters 

per layer 

3. Filter size 

4. Stride 

5. Types of pooling 

6. Dropout value 

7. Activation 

function 

NA NA CNN 
CIFAR

-10 
6.90 3.4M 

[14] PSO 
1. Image size 

2. Filter size 
4 10 CNN 

CIFAR

-10 
81.47 NA 
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3. Number of filters 

4. Depth of 

architecture 

10 40 CNN RSVD 88.27 NA 

[83] 
cPSO-

CNN 

1. Convolutional 

layer 

2. Pooling layer 

3. FC layer 

4. Filter size 

5. Number of filters  

6. Stride 

7. Padding 

NA 195 

Fast 

Fitne

ss 

evalu

ation 

CIFAR

-10 
8.67 NA 

[84] PSO 

1. Number of filters 

2. Size of filter 

3. Activation 

function 

4. Fully connected 

layer 

5. Batch size 

6. Optimizer 

10 10 NA 

CIFAR

-10 
69.37 NA 

MNIS

T 
98.95 NA 

[85] GA 

1. Number of filters 

2. Size of filters 

3. Depth of 

architecture 

8 NA NA 

Stop 

Sign 

Image 

98.94 NA 

Some parameters are decided during the design phase, such as depth of 

architecture, layers and their interconnection, and learning rate. However, the 

value of a few parameters is decided during the training phase, like the number 

of filters, size of filters, batch size, learning rate, and stride & padding. In Table 

2.5, we include the research paper that compares the architecture performance 

based on parameter selection. So selection of optimum parameters and their 

value is based on different algorithms like GA and PSO. 

Evolutionary algorithms benefit architecture selection, parameter tuning, and 

architecture training in deep neural networks such as ANN, CNN, and RNN 

architecture designs. The model's performance is evaluated based on accuracy, 
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the number of training parameters, hardware requirements, scalability of data 

set, convergence speed, and number of GPUs involved. The relationship 

between the number of parameters required for constructing an architecture and 

the accuracy is indefinite in the existing literature. Identifying which 

architecture is better is indefensible as it involves many parameters. Parameter 

selection and model training is difficult in all deep neural network models. 

Architecture's performance is mostly evaluated based on accuracy and the 

number of parameters. The number of parameters is directly proportional to the 

training time of the architecture as well as the memory required for storage. 

Figure 2.14 shows the comparison of evolved architecture that shows the 

accuracy of an evolutionary-based model is equivalent to manual design 

architecture with a huge margin in the number of parameters. That shows the 

effectiveness of the evolutionary algorithm in deep architecture selection. 

Although EA performs considerably well in solving the above problem but 

involves a few challenges that need to be discussed, EA-based algorithms can 

generate numerous CNN architectures. We train all architectures and compare 

their performance while selecting the most suitable architecture. The training 

cost of a deep CNN architecture requires a good amount of computational 

power, which gets multiplied by the number of architecture designs. It is a 

primary challenge to design an efficient evolution method that can optimize the 

training cost of unique architecture. We require efficient operators that can 

generalize and effectively utilize the search space. A novel method that can 

reduce the number of parameters and optimize the training costs quickly is 

required. 
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Figure 2.14 Comparisons of evolved architectures under CIFAR-10 dataset 

The performance of EA is better than the random selection of parameters, but it 

does not guarantee the optimal parameter selection. The convergence rate in EA 

is faster in initial iterations and becomes slower when it is closer to the solution. 

Initialization of parameters is an additional problem that may cause the outcome 

to be stuck in local minima. We also use a suitable activation function to 

increase nonlinearity. Determining a suitable encoding task for a CNN 

architecture is challenging. The encoding representation of a CNN architecture 

is a demanding task because it supports exploring several CNN architectures. 

There are two major classifications of encoding methods, specifically fixed-

length encoding schemes and variable-length encoding schemes. The adoption 

of a fixed-length encoding approach in the architecture guarantees a consistent 

depth, hence enabling the smooth integration of the Convolutional Neural 

Network (CNN) and its corresponding operator. The utilization of a variable-

length encoding strategy facilitates the exploration of numerous convolutional 

neural network (CNN) architectures. However, its implementation is 

challenging due to the significant computational expenses it incurs. 

The CNN architecture designed and trained for one dataset may not be efficient 

for another type of dataset. The performance of CNN architecture relies on the 

size of the data set, image resolution, quality of images, and data distribution. 
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The existing CNN models, as discussed, are incompetent to adopt across 

multiple domains as it requires a variety of datasets in large quantities for better 

performance, especially in the medical domain where the dataset is scarce. 

Additionally, it is required to have ample knowledge in the problem domain and 

architecture design. The automatic designing of CNN architectures is required 

to resolve the issue by constructing the architecture using EA algorithms. 

However, it is unaffordable in a medium-scale educational institute and small-

scale originations due to the high computational cost involved in designing the 

architectures. 

Table 2.6 Comparison of manual and automatic architectures based on different 

evolutionary algorithms 

Ref 

Model 

name 

(CNN) 

Data Set 
Accuracy 

(%) 

Paramete

rs 

(in 

millions) 

Training 

Cost 
Approach 

[44] Le-Net MNIST 95.00 0.60 - Manual 

[45] AlexNet CIFAR-10 77.50 16.4 - Manual 

[46] VGGNet CIFAR-10 93.34 15.1 - Manual 

[47] ResNet-

110 

CIFAR-10 93.57 1.7 - Manual 

[48] GoogLe

Net 

CIFAR-10 93.64 4 - Manual 

[51] DenseNet CIFAR-10 96.54 25.6 - Manual 

[85] NAS CIFAR-10 93.99 2.5 22,400 

GPU 

days 

RNN 

[86] NAS-Net CIFAR-10 96.27 2.6 2000 

GPU 

days 

RNN 

[28] Block-

QNN-S 

CIFAR-10 95.62 6.1 90 GPU 

days 

RNN 

[83] LDWPS

O 

CIFAR-10 69.37 - 10 Epoch PSO 
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[80] cPSO-

CNN 

CIFAR-10 81.47 - - PSO 

[1] CNN-GA CIFAR-10 96.78 2.9 35 GPU 

days 

Genetic 

Algorithm 

[87] EvoU-

Net 

PROMISE-

12 

89.30 1.76 20 Epoch Genetic 

Algorithm 

[88] FAST-

CNN 

CIFAR-10 94.70 - 14 GPU 

days 

Genetic 

Algorithm 

[89] Tabu_Ge

netic 

Algorith

m 

MNIST 99.38 - 22 Epoch Genetic 

Algorithm 

[6] CGP-

CNN 

CIFAR-10 93.95 3.9 31 GPU 

days 

Genetic 

Algorithm 

[7] Genetic 

CNN 

CIFAR-10 92.90 - 20 GPU 

days 

Genetic 

Algorithm 

This article focuses on comparing architecture selection and hyperparameter 

tuning, as shown in Table 2.6. However, architecture training is one area where 

we need to check the application of EA algorithms because there may be a 

chance of being stuck in local maxima in a derivative-based training 

mechanism. This problem can be solved with the help of EA. Additionally, most 

of the CNN architecture is trained for large datasets that are inadequate for 

smaller datasets, such as medical domains like bone fracture classification and 

segmentation [25], and some real-world problems like medicinal leave 

classification [90], where we have limited datasets available. Other areas like 

RNN, NAS [91], encoder, time series prediction, and signal processing can also 

use EA-based algorithms to check the feasibility. 

The neural network architecture is used in multiple domains to solve complex 

problems and predictions. It uses to develop virtual assistants, chatbots, 

healthcare domain, entertainment, fake news detection, image recognition, 

image classifications, segmentation, robotics, and many more. It can also be 

used to design RNN based model for time series data analysis. It can be used in 

domains such as healthcare or agriculture, where researchers are not experts in 
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CNN designing. They can use an evolutionary algorithm to design 

automatically from scratch without any intervention. It can also use in 

hyperparameter tuning of deep neural networks. 

2.6  Conclusion 

The CNN has shown immense success in computer vision and image 

classification tasks, which extract image content higher representations. This 

article provides a comprehensive survey of the evolution of CNN architectures 

using various evolution algorithms. We have compared EA-based architectures 

with the existing CNN architectures created manually on different aspects such 

as accuracy, depth, number of parameters, and computation cost. In this survey, 

we have examined different EA algorithms like GA and PSO and their 

applications to optimize the parameters of convolutional neural networks. We 

have compared EA from four aspects: encoding technique, population 

initialization, EA operators like mutation and crossover, and fitness function. 

Table 2.6. summarizes the performance of various CNN designs in benchmark 

data sets. We have analyzed different manually-designed state-of-the-art CNN 

architectures in the image classification dataset and addressed the issues and 

challenges in the existing techniques that can help in future research work. It is 

challenging to manually select and initialize the parameters because of their 

large size. The recent study areas, EA-based algorithms such as GA and PSO 

have been employed to handle the problem with satisfactory results. However, 

a few issues and challenges, including proper encoding technique, weight 

initialization, and computation resources, still exist. Additionally, different EA-

based operators like mutation and crossover need to be redefined to cover 

maximum search space efficiently. We must define a good fitness function that 

can optimize the performance and reduce the number of comparisons. 
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CHAPTER -3 

3 ENCODING REPRESENTATION OF CNN 

ARCHITETCURE 

3.1  Introduction 

To design CNN architecture using an evolutionary algorithm first we need to 

define encoding representation to represent CNN genotype and phenotype. The 

literature analysis reveals that encoding schemes can be roughly categorized 

into two types: This discussion pertains to two types of encoding methods: 

fixed-length encoding schemes and variable-length encoding schemes. The 

implementation of a fixed-length encoding method requires the first 

determination of the architectural depth. One of the benefits of utilizing fixed-

length encoding representation is its ease of implementation on pre-existing 

architecture, making it well-suited for defining mutation and crossover 

operators. Genetic CNN [7], and Evo-CNN [82] are used fixed-length encoding 

to define CNN architecture. In the variable-length encoding scheme depth of 

architecture is not restricted which helps to explore the architecture more 

generously. But it is quite a complex task to define the genetic operation to 

mutate the architecture. Architecture such as CNN-GA [1], CGP-CNN [6], and 

AE-CNN [80] is used variable-length encoding representation. The 

effectiveness of encoding representation is evaluated based on computation 

cost, accuracy, number of parameters, and adaptability. If encoding schemes are 

represented with only a few parameters then It will restrict the exploration of 

the architecture. If we represent individual training parameters as one unit then 

the number of possible chromosomes is too huge which will increase 

computation cost. 

In Table 3.1, we compared the effectiveness of different existing encoding 

schemes in terms of the number of parameters and training time in GPU days 

with different datasets. After discussing relevant gaps in different encoding 
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schemes, a novel adaptive coding model is proposed. Figure 3.1 depicts a 

comparison of different encoding schemes based on architecture using the 

CIFAR-10 data set using genetic algorithms. The proposed scheme is adaptive 

& versatile in nature. A simple representation offers a better understanding of 

the complex network. Adaptive behavior scales up the application domain of 

the proposed scheme.  

Table 3.1 Comparative analysis of existing encoding techniques 
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Genetic 

CNN, 

2017 [7] 

CIFAR-10 0.52M 17 

Titan-X 

1. Fixed-length binary encoding scheme is 

used. 

2. This encoding is used to represent an 

existing model.   

3. All convolutional layers use the same 

number of filters and filter size. 

ILSVRC 

2012 
- 20 

CGP-

CNN, 

2017 [6] 

 

 

CIFAR-

100 
0.83 M 14 

Nvidia 

Geforce-

GTX 

1080 

1. This representation is suitable to represent 

basic architecture as only two fields are 

used for concatenation. 

2. The limited number of pooling and 

convolution layer make it restricted to 

explore. 

3. Number of nodes is between 10 and 50. 

CNN-

GA, 

2020 [1] 

CIFAR-10 2.9M 35 Nvidia 

Geforce-

GTX 

1080 Ti 

1. Variable length encoding is used. 

2. Fixed filter dimension 3X3 and stride 

value 2 is used in the convolutional layer. 

3. Fully connected layers are not part of the 

representation. 

CIFAR-

100 
4.1M 40 

3.2  Linear encoding scheme 

In this algorithm, we pass input datasets, and after a sequence of evolution, the 

framework automatically evolves to a suitable CNN architecture. A random 

population is initialized using a predetermined encoding and population size 



54 

 

throughout evolution. Figure 3.2 depicts an example of the variable length 

encoding system employed in the proposed study. This representation uses a 

32×32 dimension colour image as the input to the convolutional layer. The 

number of filters in a convolutional layer is randomly selected using population 

initialization methods. The dimension of a filter is fixed to 3×3, and a stride of 

1×1 is used to make it homogenous and reduce the computational cost. 

In the pooling layer, the algorithm automatically selects avg pool or max pool 

operation with equal probability having kernel size of 2×2 and stride 2×2. The 

concatenated string of different layers represents the encoded representation of 

CNN architecture, as shown in Figure 3.2. In pooling layer representation, it 

shows with the pooling operation either min, max, or average pooling along 

with kernel size 2×2 and stride 2×2. The concatenated string represents the 

encoded representation of CNN architecture. 
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Figure 3.1 Comparison of various encoding schemes under training in CIFAR-10 dataset 

using genetic algorithm; (a)   Accuracy achieved, (b) Number of parameters used, (c) Error 

rate and training cost 

 

Figure 3.2 Decoded architecture of encoding representation “256-512-max-max-512-

256” 

The hyperparameters are manually chosen using the existing state-of-the-art 

model. The fitness of each individual, which represents a distinct convolutional 

neural network (CNN) architecture, is evaluated during the process of evolution 
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using the given dataset. In the succeeding generation, parental individuals are 

chosen according on their fitness, and new offspring are produced using genetic 

operators such as crossover and mutation. The recently generated population is 

merged with the preexisting population to form a novel roster of progeny. The 

process of development continues until the counter surpasses the maximum 

generation, with the counter being incremented by one. Most existing 

frameworks are developed using fixed maximal generation, which could restrict 

resource management. This paper employed adaptive exit conditions that 

terminate automatically when the convergence rate is slow or near zero. 

3.3  Hybrid encoding scheme 

This section details the proposed encoding scheme to represent CNN topology.  

The proposed scheme employs a variable-length encoding scheme that 

represents the depth as well as the width of the architecture. The scheme 

comprises four basic building blocks as shown in Figure 3.3.  A few bit strings 

represent each building block and concatenated structure will represent the 

complete CNN architecture. In this method, we define some basic building 

blocks as the genesis block, transit block, agile block, and fully connected block. 

A few bit strings represent each building block and concatenated structure will 

represent the complete CNN architecture. The genesis block is the combination 

of one convolutional layer followed by one pooling layer, which is starting 

block in the architecture. The complexity of an architecture is increased by 

different combinations of agile and transit layers, and the fully connected layer 

is used at the end. 

The agile block is a concatenated convolutional block with a fixed number of 

filters and the dimension of filters is also fixed. To represent the agile block 

using an encoding scheme we used five concatenated parameters, the first one 

represents operation, the second one represents the size of filters, the third one 

represents the number of filters, the fourth parameter represents the depth and 

the last one represents the interconnection of a different convolutional layer 
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using binary encoding. The size of filters and number of filters are randomly 

initialized with pool of data created using literature study. The depth of 

architecture also generated randomly in the range of [3-5]. Their 

interconnection is represented by binary encoding proposed in genetic cnn.  

In the transit blocks we define operational block followed by batch 

normalization and then pooling operation in fractional part. Value of pooling 

operation is define in range of [0-1]. If value is less then 0.5 means max pool 

operation is used else mean pool opearation is used.  Batch normalization is 1x1 

convolution operation is used to scale down filters dimensional to concatenate 

different size of input features. In fully connected layers first parts represent 

operational value, after that k1 represents the number of results in flattern 

operation and k2 represents number of output classes.  

The main advantage of the proposed encoding scheme is that it can represent 

architecture with a combination of two different layers. It makes the 

representation simple and one can increase the depth of architecture easily. 

Also, due to fewer parameters, one can define different evolutionary operations 

like mutation and crossover efficiently. The scheme also supports increasing the 

complexity within the block. In the agile block, it can generate filer size and 

depth randomly and thereby increases complexity. The proposed scheme 

supports a hybrid encoding scheme that utilizes binary as well as decimal 

representation. The encoding scheme offers the maximum choice of exploration 

in depth and width as well as faster optimization. We pass our initialized 

encoding method in evolutionary algorithms to optimize for better architecture. 

The maximum number of iterations is fixed at 50 as limited computation power 

is available.  
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Figure 3.3 Hybrid encoding (a) Block diagram of the proposed encoding 

representation (b) CNN architecture of corresponding proposed encoding scheme [92] 

The performance of architecture depends on topology design as well as 

hyperparameter selection [93]. In this paper, we fixed the value of learning 

parameters based on the previous literature such as we chose filter dimensions 

1x1, 3x3, and 5x5, and a number of filters 64, 128, and 256 in a convolutional 

layer and agile layer [94]. We propose depth in range 3 to 7 in the agile layer to 

maintain simplicity. For the weight initialization of a fully connected layer, we 

suggest using transfer learning in the CIFAR-10 benchmark dataset for 

evaluation of performance as the limited computational power is available else 

CIFAR-100 or any complex dataset can be used. In the fitness function, we 

propose to use only 10% of the dataset to select the next population which 

makes it faster, and after the selection of the top architecture, we trained for the 

complete dataset. Input image size is proposed as 32x32, with 128 batch size 

and the learning rate is chosen as 0.1 for homogeneous data size.  

A novel encoding scheme for representing CNN architecture is proposed which 

can effectively be used to represent a complex architecture with a variable 
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number of parameters.  The study also presents a decisive comparison among 

various existing encoding schemes that can help the researchers in choosing the 

best suitable method for their application-specific projects.  The comparative 

analysis highlights the merits and demerits of existing schemes through multiple 

parameters like accuracy and computational power. The authors also 

represented a depth analysis based on the number of parameters used to 

represent input chromosomes, their initialization methods, operators used to 

find different combinations, and fitness function to stop the searching methods. 

3.4  Conclusion 

The study proposed a novel encoding method that is used to represent complex 

CNN architecture. In this encoding, we can represent existing architecture as 

well as generate new architecture using an available dataset. It covers both the 

depth and width of architecture that reduces the number of parameters and helps 

to identify comparable architecture in significant improvement of computation 

power with comparable accuracy. This encoding scheme is used to pass 

evolutionary algorithms to design new architecture automatically using 

different datasets. We can use evolutionary algorithms for hyperparameter 

tuning and use this encoding representation in the future. 
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CHAPTER -4 

4 AN EVOLUTIONARY FRAMEWORK FOR DESIGNING 

ADAPTIVE CONVOLUTIONAL NEURAL NETWORK  

4.1  Introduction 

This part provides a description of the structure of the proposed algorithm in 

subsection 4.2, followed by an analysis of its crucial points population 

initialization in subsections 4.2.1, fitness function in subsection 4.2.2, and 

offspring generation in subsection 4.2.3. In order to facilitate comprehension of 

the algorithm under consideration, we shall provide a comprehensive account 

of the details associated with each notable stage, with an evaluation of specific 

architectural-level designs. 

4.2  Algorithm overview 

The proposed algorithm's framework is shown in Algorithm 1, and the flow 

chart of the proposed framework is depicted in Figure 4.1.  

 

Figure 4.1 Flow chart of evolutionary algorithms  
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In this algorithm, we pass input datasets, and after a sequence of evolution, the 

framework automatically evolves to a suitable CNN architecture. A random 

population is initialized using a predetermined encoding and population size 

throughout evolution. Figure 3.2 depicts an example of the variable length 

encoding system employed in the proposed study. 

  Algorithm 1 Framework of the proposed algorithm using EA 

Input: A dataset of a set of CNN architectures represented by the 

variable length encoding technique. 

Output: Identifies the best CNN architecture.  

1. Propose an encoding scheme to represent CNN architecture. 

2. Initialize the population of N CNN architectures with the help of 

the proposed encoding method. Initialize max iteration G, the 

number of epochs for the fitness function, and the input dataset.  

3. Initialize the hyperparameter kernel size, loss function, learning 

rate, and stride size. 

4. While (G>0) 

4.1 Calculate the fitness of each architecture. 

4.2 Select N/2 best architectures for reproduction using GA 

operators. 

4.3 Apply crossover and mutation operators to generate new 

offspring. 

4.4 Concatenate the new population with the existing best 

population to create a new pool of N architectures.  

5. G G-1 

6. End 

7.  Return the best CNN architecture. 
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4.2.1 Population Initialization 

The main components of a Convolutional Neural Network (CNN) consist of 

convolutional layers, pooling layers, and occasionally fully connected layers. 

The performance of the CNN is significantly influenced by its parameters, 

which are depending upon the depth and width of the network's connections. 

The fully connected layer is omitted in this encoding due to its computational 

inefficiency caused by the large number of parameters. 

Algorithm 2 Population Initialization 

Input: The number of initial population N. 

Output: The list of N initialized architecture using encoding representation. 

1. P  Ø 

2. While |P| < N 

3. Choose random integer D as depth. 

4. Generate a convolutional layer with the number of filters between [25 −

29] and filter size is 3×3. 

5. While (D>0) 

5.1. Choose a random number between (0-1) 

5.2. If number < 0.5 

5.2.1. Generate a convolutional layer with the number of filters are 

between [25 − 29]  and a filter size is 3×3. 

5.3. Else 

5.3.1. Choose between max pool and avg pool randomly.  

5.3.2. Concatenate the selected layer with the existing architecture 

Pi. 

5.4. D--; 

6. P=P U Pi 

7. End 

8. Return P.             
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Initially, the number of population and the depth of each population is selected 

randomly. In the selected population, the first layer is fixed as a convolutional 

layer; then, convolutional and pooling layers are determined randomly with 

equal probability. The convolutional layer's filter count is randomly chosen in 

the range of [25 − 29] . All the selected population is organized in a list to 

evaluate the fitness value after initialization. The filter size and pooling 

operation range are selected manually based on a few standard architectures. 

The algorithm for population initialization is mentioned in Algorithm 2. 

4.2.2 Fitness function 

Algorithm 3 evaluates the fitness of all input populations using a given dataset. 

An individual's CNN is initially decoded using a predetermined set of 

hyperparameter parameters. CNN decoding is trained with training data, and 

accuracy is used to determine fitness. Because the training of CNN is a time-

taking task, we used half of the dataset for initial training to make it efficient. 

After training the population, half of the population is eliminated based on 

fitness score. The best population is chosen for reproduction in the following 

offspring generation. If the model is showing good training accuracy, but 

validation accuracy is not increasing in respective of training in a few successive 

epochs, then architecture may suffer from overfitting [95].  We can eliminate 

the overfitted model to reduce the computation cost in the early stages. 
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Algorithm 3  Fitness function   

Input: The selected population list of CNN architecture, input dataset, range 

of hyperparameters, optimizer, loss function, epoch, train data, and test data. 

Output: Best CNN architecture with fitness value 

1. Divide the dataset into train and test data. 

2.  Fbest  0 

3. For each population Pi in population pool P do: 

4. Decode the architecture and calculate fitness accuracy using half of 

the population using backpropagation methods. 

5. Eliminate the architecture based on overfitting. 

6. Choose P best population, train using the complete dataset, and 

calculate fitness value F for each. 

6.1 If  F> Fbest 

6.2 Fbest = F 

6.3 End 

7. End 

4.2.3 Offspring generation 

Algorithm 4, consisting of two parts, illustrates the specifics of producing the 

offspring. Crossover is the first, and mutation is the second. Specifically, two 

parents are selected based on which of two randomly selected individuals is 

more suitable. We build a new set of populations with equal probability by 

utilising mutation and crossover processes. In a crossover operation, each parent 

is arbitrarily divided into two pieces, and the two pieces from each parent are 

exchanged to generate two offspring. We have chosen crossover probability 0.8 

and mutation probability 0.2. Mutation operation helps define the architecture's 

exact depth, whereas the crossover operation increases the convergence 

rate. Both operations must be compatible with the encoding scheme. Newly 

generated offspring will be combined with the previous best architecture to 

create a new population pool. 
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Algorithm 4 Offspring generation 

Input: Input population list P, with its fitness value, mutation, and crossover 

operation with their probability value. 

Output: Newly generated population list Q. 

1. Q  Ø 

2. While | 𝑄𝑡|<|𝑃 | do 

2.1. p1,p2  randomly select two population values from P  

2.2. r  randomly generate number in range [0, 1].  

2.3. If (r < 0.5) 

2.3.1. Select mutation operations [add conv layer, add skip layer, add 

pool layer, remove layer of filters], change the value, and 

position (index value in offspring) randomly. 

2.4. Else 

2.4.1. Choose the crossover point in p1 and p2. 

2.4.2. Apply crossover operation 

2.5. End 

3. Return 𝑄𝑡 

4. End                                                

4.3  Conclusion 

After a sequence of evolution, the framework automatically evolves to a 

suitable CNN architecture. During evolution, a random population is initialized 

using a predefined encoding and population size. The hyperparameters are 

manually chosen using the existing state-of-the-art model. Each individual's 

fitness, which encodes a specific CNN architecture, is assessed throughout 

evolution using the provided dataset. In following generations, parental 

individuals are chosen based on their fitness, and the creation of more offspring 

is assisted through the implementation of genetic operators, such as crossover 

and mutation. The recently generated populace combines with the preexisting 

population to form a novel inventory of descendants. The process of evolution 
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continues until the counter surpasses the predetermined maximum generation, 

at which juncture the counter is incremented by one. we employed adaptive exit 

conditions that terminate automatically when the convergence rate is very slow 

or close to zero. 
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CHAPTER -5 

5 EXPERIMENTAL RESULTS 

5.1  Introduction 

This section provides a concise overview of the differences between the 

proposed methodology and the outcomes seen by other researchers in the field. 

A comparison analysis was performed to evaluate our findings in relation to the 

current state-of-the-art approaches. The evaluation criteria included 

classification accuracy, computational resources utilized (measured in terms of 

GPU days), and architectural considerations. The term "GPU day" refers to the 

duration of algorithm execution on a single GPU, serving as a metric for 

quantifying the computational resources utilized by these methods. The 

outcomes of a comparison between the suggested algorithm and its peer rivals 

are presented in Table 5.1. The initial column presents a compilation of 

architectural classifications. The second column has the nomenclature of the 

architectural structures. The encoding methods are represented in the third 

column, while the fourth column denotes the evolutionary algorithm employed. 

The datasets employed are specified in the fifth column, while the classification 

accuracy is documented in the sixth column. The number of generations is 

specified in the seventh column, followed by the training epochs in the eighth 

column. Finally, the parameter count for the pertinent convolutional neural 

network (CNN) is displayed in the ninth column. Furthermore, the tenth column 

displays the number of GPU days utilized. All competitors' results in the table 

are extracted from the related publications; ''–'' denotes that the results have not 

been published. 
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Table 5.1 The classification accuracy comparison on the CIFAR-10 datasets between 

the proposed algorithm and its contemporary contemporaries [102]. 
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Figure 5.1 Comparison between different evolutionary CNN algorithms using 

CIFAR-10 datasets.  

5.2  Discussion 

Table 5.1 displays the results of a comparison between the proposed algorithm 

and its peer competitors. In this table the peer competitors into two categories. 

In the first group, we compared architectures requiring manual aid in design 

selection or parameter adjustment. In this category, the computation cost is less 

because half of the work is performed by professionals. In the second group, we 

compared architectures that evolved without human involvement. Our 
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methodology exhibits a significant improvement in classification accuracy on 

the CIFAR10 dataset within the primary category of peer competitors. 

Specifically, the Eden architecture exhibits a 16.8% improvement, while the 

LDPSO design showcases a more substantial increase of 25.4%. In the second 

category, our technique improves classification accuracy on the CIFAR10 

dataset by 2.46% for CNN-GA architecture and 12.8% for Genetic-CNN 

architecture as shown in Figure 5.1 for 5 generation and in Figure 5.4 for 10 

generation respectively.  It also exhibits a 1.06% and 0.45% improvement on 

the MNIST dataset over the Eden and E-CNN-MP architectures, respectively. 

We further tested the efficacy of our approach using the Fashion_MNIST 

dataset, which demonstrates a 3.37% improvement over the capsuleNet [99] 

architecture. The classification accuracy is slightly less for EAS, CGP-CNN, 

NAS, CNN-GA, and DCNN architecture. However, in addition to classification, 

we also compare the effectiveness based on the number of parameters, epoch, 

and computation required in GPU. DCNN requires 100 epochs and 12 GPU 

days to train CIFAR-10 datasets, CNN-GA requires 30 GPU days and up to 350 

epochs, CGP-CNN is trained in 500 epochs and requires 27 GPU days, EAS 

requires 10 GPU days with 300 epochs, and NAS requires 50 epoch and 22,400 

GPU days. Our algorithm was trained in 10 generations, 10 epochs, and 6.38 

hours using the Nvidia A100 GPU configuration on the CIFAR 10 dataset, 

demonstrating significant improvement and a faster convergence rate. Our 

techniques provide competitive performance in terms of precision and the 

number of parameters while requiring less calculation time. 

To assess the efficacy of the proposed methodology in revealing the structure 

of the convolutional neural network (CNN), we have presented the evolution of 

outcomes in Tables 5.2 and  Table 5.3, corresponding to the MNIST and 

Fashion_MNIST datasets, respectively. Figure 5.2 illustrates the evolutionary 

history of the proposed approach in its pursuit of identifying the optimal 

convolutional neural network (CNN) architecture for the MNIST dataset. The 

figure presents two key metrics: (a) average accuracy and (b) top accuracy.  

Additionally, Figure 5.3 illustrates the evolutionary trajectory of the proposed 
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method in its pursuit of identifying the optimal architecture of a Convolutional 

Neural Network (CNN) on the CIFAR10 dataset. The effectiveness of the 

proposed algorithm is demonstrated by comparing the convergence of various 

benchmark evolutionary trajectories, as depicted in Figure 5.5. We randomly 

chose the N population and initialized the value using the recommended 

encoding approach. In this experiment, the population size is N=5, the number 

of epochs is 40, and the number of generations is 10. The architectures are 

trained using the backpropagation technique for forty epochs. In the training 

and validation sets, we utilized an 80/20 ratio. After training, the validation 

accuracy applied in the fitness function for decision-making of the proposed 

method is calculated. We eliminated weaker populations for the next generation 

using mode accuracy. The fitness function eliminates 50 % of the population in 

each generation, and the best 50 % are employed as parents. The selected 

population is repopulated using the genetic operator's mutation and crossover 

with probabilities of 0.2 for mutation and 0.80 for crossover. The existing fittest 

population is merged with the new population. Thus, using this method, the 

same number of chromosomes is available in each generation. The effectiveness 

of the suggested algorithm has been assessed through the utilization of statistical 

measures such as the minimum, mean, maximum, mode, and standard 

deviation, and standard error of the mean (SEM). The standard error of the mean 

(SEM) measures how much discrepancy is likely in a sample's mean compared 

with the population mean. For each iteration, we have selected the most 

improved CNN architecture, which is represented in the final column of Table 

5.2 and Table 5.3. The maximum accuracy indicates the best accuracy obtained 

by any CNN architecture at that generation. The standard deviation 

demonstrates the genetic algorithm's efficacy in terms of a quicker convergence 

rate. Initial standard deviation values are largely due to the random initialization 

of the population. However, its value decreases over successive generations, 

and the top accuracy rises, bringing the outcome close to the global optimum. 

If the standard deviation continues to decline, the subsequent few generations 

will see greater convergence. With this strategy, we reached a standard near the 
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benchmark accuracy in 10 epochs and 10 generations, demonstrating a faster 

convergence rate with equivalent precision and less computational power. This 

technique yielded 99.39% top accuracy on the MNIST datasets and 93.07% on 

the Fashion_MNIST dataset, equivalent to the benchmark accuracy without user 

intervention and requiring less GPU days. The evolutionary progression of the 

algorithm under consideration in uncovering the optimal convolutional neural 

network (CNN) structure on both the Fashion MNIST dataset and MNIST 

dataset is depicted in Figure 5.6 and Figure 5.8 correspondingly. Figure 5.7 

illustrates the comparison of various state-of-the-art architectures for the 

MNIST dataset. 

Table 5.2 Evolution of CNN model using MNIST dataset with population size=5, 

epoch 40, and generation=10 

Generation Min% Avg % Max% Med% Std-D SME Best CNN model 

Gen 1 87.15 95.84 99.15 97.46 4.39 1.96 256-512-max-max-

512-256 

Gen 2 97.46 98.34 99.15 98.01 0.68 0.30 256-512-max-max-

512-256 

Gen 3 97.49 98.69 99.15 99.15 0.66 0.29 256-512-max-max-

512-256 

Gen 4 98.57 99.01 99.23 99.15 0.24 0.10 256-512-max-512-

256-max-512-256 

Gen 5 98.62 99.04 99.23 99.15 0.21 0.09 256-512-max-512-

256-max-512-256 

Gen 6 99.15 99.21 99.33 99.23 0.06 0.04 256-512-max-max-

256-512-max-512-

256-max-512-256 
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Gen 7 99.23 99.27 99.33 99.23 0.05 0.02 256-512-max-max-

256-512-max-512-

256-max-512-256 

Gen 8 99.04 99.26 99.36 99.33 0.11 0.05 256-512-max-max-

512-256-max-512-

256 

Gen 9 99.10 99.29 99.36 99.36 0.04 0.10 256-512-max-max-

512-256-max-512-

256 

Gen 10 99.29 99.34 99.39 99.36 0.02 0.01 256-512-512-256-

max-512-256-max-

512-256 

Table 5.3 Evolution of CNN model using Fashion_MNIST dataset with population 

size=5, epoch 10, and generation=10 

Generation Min

% 

Avg % Max% Med% Std-

D 

SME Best CNN model 

Gen 1 
88.20 89.25 91.01 88.69 0.99 0.44 128-256-512-256-

mean-mean 

Gen 2 
88.69 89.44 91.01 89.12 0.86 0.38 128-256-512-256-

mean-mean 

Gen 3 
89.12 89.77 91.01 89.64 0.67 0.29 128-256-512-256-

mean-mean 

Gen 4 
89.59 90.70 91.43 91.01 0.70 0.31 128-256-512-256-

mean-mean-mean 

Gen 5 
91.01 91.35 91.60 91.40 0.19 0.08 128-256-512-256-512-

256-mean-mean 

Gen 6 
91.01 91.35 91.60 91.40 0.19 0.08 128-256-512-256-512-

256-mean-mean 

Gen 7 
91.40 91.86 93.07 91.60 0.24 0.11 128-256-128-256-

mean-mean-mean 

Gen 8 
91.41 91.94 93.07 91.79 0.58 0.26 128-256-128-256-

mean-mean-mean 
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Gen 9 
91.60 91.98 93.07 91.79 0.55 0.24 128-256-128-256-

mean-mean-mean 

Gen 10 
91.64 92.11 93.07 91.82 0.51 0.23 128-256-128-256-

mean-mean-mean 

 

 

Figure 5.2 The proposed algorithm's evolutionary trajectory in discovering the best 

CNN architecture on the MNIST dataset; (a) Avg accuracy (b) Top accuracy. 
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Figure 5.3 The trajectory of the proposed algorithm as it discovers the optimal CNN 

architecture on the CIFAR10 dataset.  

 

Figure 5.4 Comparison between different evolutionary CNN algorithms using 

CIFAR-10 datasets  
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Figure 5.5 Comparing the evolutionary trajectory of the proposed algorithm with 

CNN-GA and Genetic CNN to determine the optimal CNN architecture for the 

CIFAR10 dataset.   

 

Figure 5.6 The evolutionary trajectory of the proposed algorithm in discovering the 

best architecture of CNN on the Fashion MNIST dataset 



77 

 

 

Figure 5.7 Comparison between different evolutionary CNN algorithms using 

MNIST datasets 

 

Figure 5.8 The trajectory of the proposed algorithm as it discovers the optimal CNN 

architecture on the MNIST dataset. 

The proposed algorithm demonstrated an increase in convergence rate using the 

defined techniques. We have displayed the evolution in Table 5.2 and Table 5.3 

to help understand the efficacy of the suggested approach for discovering CNN 

designs. We used the MNIST and Fashion_MNIST datasets with a population 

size of 5, where each architecture is trained for 40 and 10 epochs, respectively. 

The evolution of each generation is expressed using standard deviation and top 

accuracy. It shows the effectiveness of the proposed algorithm with its faster 
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convergence rate in the initial iteration reaching toward global optima without 

being stuck in the local one. Additionally, it offers the diversity of the algorithm 

that works suitably in different datasets. 

5.3  Conclusion 

This study aims to develop a genetic algorithm (GA)-based method for 

automatically designing convolutional neural network (CNN) architectures. 

This method seeks to select the most suitable CNN architecture for image 

classification tasks, specifically targeting users who have limited expertise in 

changing CNN structures. The objective was achieved by the presentation of a 

new encoding method for the genetic algorithm (GA) that allows for the 

encoding of various depths for convolutional neural networks (CNNs). The 

proposed technique is assessed and contrasted with 11 contemporary peer 

competitors, comprising of four partial tuning and seven automatic algorithms 

that determine the architectures of CNNs. The experimental results obtained 

from the MNIST, Fashion_MNIST, and CIFAR10 datasets provide evidence 

that the suggested methodology possesses the potential to autonomously 

generate deep convolutional neural network (DCNN) structures that are 

equivalent to, and in some cases, even surpass state-of-the-art models. 
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CHAPTER -6 

6 CONCLUSION AND FUTURE SCOPE 

The utilization of a genetic algorithm for the automatic selection of 

convolutional neural network (CNN) architecture has demonstrated efficacy in 

optimizing the performance of such networks. The genetic algorithm (GA) is a 

search technique that draws inspiration from natural selection and genetics. It is 

employed to iteratively refine a population of potential solutions, aiming to 

converge towards an ideal answer. To use a genetic algorithm for automatic 

CNN architecture selection define the objective of the CNN architecture 

selection, such as maximizing classification accuracy on a specific dataset. In 

the context of CNN architecture, a chromosome represents a candidate 

architecture. We need to define a suitable chromosome representation, which 

can be a binary string or a list of integers representing different architectural 

choices (e.g., number of layers, filter sizes, pooling operations). Generate an 

initial population of random candidate architectures (chromosomes). The size 

of the population is contingent upon the intricacy of the search space and the 

availability of computer resources. Assess the level of suitability of each 

potential architecture within the population in terms of fitness. Train and 

evaluate each architecture on a validation set using a predefined fitness function 

(e.g., classification accuracy). The fitness function measures how well each 

architecture performs on the given objective. The process of selecting 

individuals from the population is conducted based on their fitness scores. 

Greater levels of physical fitness are indicative of superior performance. 

Various selection methods commonly employed in evolutionary algorithms 

include tournament selection, roulette wheel selection, and rank-based 

selection. The application of genetic operators, such as crossover and mutation, 

is employed to generate novel candidate designs derived from the chosen 

people. The process of crossover involves the amalgamation of genetic material 

from two parent architectures in order to generate offspring, whereas mutation 

brings minor and random alterations to the design. The process involves doing 
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the evaluation, selection, and genetic operators repeatedly for a predetermined 

number of generations or until a termination requirement is satisfied. This 

termination criterion could be achieving a desirable fitness level or depleting 

computational resources. Upon the algorithm reaching the termination criterion, 

the optimal Convolutional Neural Network (CNN) architecture is determined 

by selecting the architecture that exhibits the highest performance from the final 

population. 

6.1  Summary of the Thesis 

In this thesis, we presented a methodology to design an effective CNN model 

using evolutionary algorithms. This framework generates a CNN architecture 

automatically using the datasets given. We validated our proposed methods 

using three benchmark datasets MNIST, Fashion_MNIST, and CFAR-10. 

These datasets were utilized for training and evolving our deep learning models. 

We compared our methods with the existing state-of-the-art architectures using 

parameters accuracy, computation cost, and the number of parameters obtained. 

The main research objectives mentioned in Chapter 1, section 1.3 have been 

addressed in this thesis in the following order: 

First, we propose two novel encoding representations: Each encoding 

representation outlines the process of population initialization. The length of the 

individual, which signifies the depth of the related Convolutional Neural 

Network (CNN), is initialized in a random manner. The initial step involves the 

creation of a linked list of L nodes, with each node being appropriately 

specified. If a number generated at random is found to be less than 0.5, the 

corresponding node is designated as a skip layer. Alternatively, it can be 

interpreted as a pooling layer, with the specific pooling type being selected by 

an additional random variable. In skip connection layers, the feature map 

numbers for the nodes are assigned in a random manner. An illustrative 

demonstration of the suggested encoding approach for a Convolutional Neural 

Network (CNN) is presented, showcasing the depiction of skip layers and 
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pooling layers through designated codes. The whole convolutional neural 

network (CNN) architecture is represented by a sequential concatenation of 

codes corresponding to the individual layers. For instance, a CNN with a depth 

of 8 can be denoted as "32-64-0.2-64-256-0.8-512-256".  

The second scheme employs a variable-length encoding approach that 

represents both the depth and width of the architecture. It consists of four 

building blocks: the genesis block, transit block, agile block, and fully 

connected blocks. The genesis block handles the input image size, while the 

transit block reduces feature maps and dimensions using 1x1 convolution and 

pooling operations. The value of the pooling operation determines whether max 

pooling or mean pooling is used. The agile block incorporates dense 

connections and skip connections to reduce parameters and increase 

complexity. The components encompassed under this framework consist of 

operational procedures, the dimensions of the filter, the quantity of filters 

employed, the level of depth, and the interconnections established between 

convolutional layers. Ultimately, the fully linked blocks serve to flatten the 

layer and subsequently transform it into the output layer, which is characterized 

by the number of classes. The proposed encoding scheme offers several 

advantages. It enables the representation of architectures with a combination of 

two different layers, simplifying the representation and facilitating the increase 

in architecture depth. The scheme supports evolutionary operations like 

mutation and crossover efficiently due to its fewer parameters. It also allows for 

increasing complexity within the blocks, randomly generating filter sizes and 

depths in the agile block. The scheme incorporates a hybrid encoding scheme, 

utilizing binary and decimal representations. It provides flexibility for exploring 

depth and width, leading to faster optimization. 

Third, we demonstrate a novel framework to evolve the CNN architecture 

automatically using GA. In this algorithm, we pass input datasets, and after a 

sequence of evolution, the framework automatically evolves to a suitable CNN 

architecture. A random population is initialized using a predetermined encoding 
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and population size throughout evolution. The basic components of a CNN are 

convolutional layers, pooling layers, and sometimes fully linked layers. The 

CNN's performance heavily depends on its parameters, which depend on the 

connection depth and width. The fully connected layer is discarded in this 

encoding as many parameters make it computationally inefficient. Initially, the 

number of population and the depth of each population is selected randomly. In 

the selected population, the first layer is fixed as a convolutional layer; then, 

convolutional and pooling layers are determined randomly with equal 

probability. It evaluates the fitness of all input populations using a given dataset. 

An individual's CNN is initially decoded using a predetermined set of 

hyperparameter parameters. CNN decoding is trained with training data, and 

accuracy is used to determine fitness. Because the training of CNN is a time-

taking task, we used half of the dataset for initial training to make it efficient. 

After training the population, half of the population is eliminated based on 

fitness score. The best population is chosen for reproduction in the following 

offspring generation. Specifically, two parents are selected based on which of 

two randomly selected individuals is more suitable. We build a new set of 

populations with equal probability by utilising mutation and crossover 

processes. In a crossover operation, each parent is arbitrarily divided into two 

pieces, and the two pieces from each parent are exchanged to generate two 

offspring. After a sequence of evolution, the framework automatically evolves 

to a suitable CNN architecture. During evolution, a random population is 

initialized using a predefined encoding and population size. The 

hyperparameters are manually chosen using the existing state-of-the-art model. 

Each individual's fitness, which encodes a specific CNN architecture, is 

assessed throughout evolution using the provided dataset.  

In subsequent generations, parental individuals are selected based on their 

fitness, and the production of additional offspring is facilitated through the 

implementation of genetic operators, including crossover and mutation. The 

recently generated population is merged with the preexisting population to form 

a novel roster of progeny. The process of evolution continues until the counter 
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surpasses the maximum generation threshold, at which juncture the counter is 

incremented by one. The primary aim of this research is to devise a 

methodology for the automated generation of Convolutional Neural Networks 

(CNNs) through the utilization of Genetic Algorithms (GA). This technique 

seeks to determine the most effective CNN architecture for image classification 

tasks, specifically targeting users who have limited expertise in changing CNN 

structures. The objective was achieved by the proposal of a novel encoding 

strategy for the genetic algorithm (GA) to encode arbitrary depths of 

convolutional neural networks (CNNs). The proposed methodology is assessed 

and contrasted with 11 contemporary peer rivals, comprising of four partial 

tuning and seven automatic techniques used for establishing the architectures of 

CNNs. The empirical findings obtained from conducting experiments on the 

MNIST, Fashion_MNIST, and CIFAR10 datasets demonstrate that the 

proposed methodology has the capability to autonomously create deep 

convolutional neural network (DCNN) architectures that are on par with, or 

perhaps beyond, the most advanced models currently available. 

6.2  Future  Work 

The proposed framework for automatic CNN architecture evolution using 

genetic algorithm for image classification provides better classification 

accuracy than the baseline model due to the effectiveness of encoding 

representation and proposed genetic operators in obtaining better accuracy in 

benchmark datasets MNIST, CIFAR10, and Fashion_MNIST. However, the 

research presented here have wider scope with several extensions addressing 

variety of challenges that require future attention, as is the case with many other 

academic articles in the same field. In the part that follows, we go through some 

of these issues and suggest upcoming directions that, in our opinion, will have 

a significant influence. 

The proposed work focus on linear variable length encoding scheme that make 

its application easier to adopt and implement using different genetic operators. 
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But it cannot handle the skip connection in deeper architecture. Therefore, In 

deep neural networks, as the gradient flows backward during the training 

process, it can get progressively smaller, leading to the vanishing gradient 

problem. When gradients become too small, the network struggles to update the 

weights of earlier layers effectively, making training difficult. Skip connections 

facilitate the integration of features originating from various depths within the 

network. This enables the network to integrate low-level and high-level 

elements, hence enabling the acquisition of intricate patterns and capturing both 

detailed and overarching information. Additionally in existing encoding we 

considered only convolutional layer and pooling layer but fully connected layer 

is skiped. In future work fully connected layer also be part of improved 

architecture that improve the accuracy, 

The proposed work performance is mostly on lightweight CNN architectures, 

that often perform well on small datasets due to their simplicity and efficiency. 

These architectures are designed to have fewer parameters and lower 

computational requirements, making them suitable for small datasets and 

resource-constrained environments. However, when applied to large datasets, 

they might not be as effective. Lightweight CNN architectures usually have a 

smaller number of layers and parameters compared to larger, more complex 

architectures. While this simplicity allows them to be trained on small datasets, 

it also limits their capacity to capture and represent complex patterns in large 

datasets. Large datasets often contain diverse and intricate patterns that require 

more complex models to be effectively learned. To perform well on large 

datasets, CNN architectures with higher capacity, more layers, and more 

parameters are often preferred. Such architectures have the potential to learn 

more complex representations, capture intricate patterns, and generalize better 

to the diversity present in large datasets. 

Further research could investigate the technique’s efficacy in various 

evolutionary algorithms that can accelerate the CNN fitness measurement. The 

proposed work is based on GA. It is known for its ability to explore a broader 
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search space, making it more effective at global optimization, especially for 

complex and multimodal problems. Whereas other algorithms such as  PSO 

[103-104], and DE [105] on the other hand, tends to be more exploitative, 

meaning it is better at fine-tuning solutions once a good region of the search 

space is found. Additionally, variations of both PSO and GA, and hybrid 

approaches combining elements of both algorithms have been proposed to 

leverage their strengths while mitigating their weaknesses.  
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