

Search Space Optimization of CNN Architecture Using

Evolutionary Algorithm

 A thesis submitted to the

 UPES

For the Award of

Doctor of Philosophy

In

Computer Science

By

VIDYANAND MISHRA

 March 2024

Supervisor

Dr. LALIT KANE

School of Computer Science (SOCS)

UPES

Dehradun- 248007: Uttarakhand

i

Search Space Optimization of CNN Architecture Using

Evolutionary Algorithm

 A thesis submitted to the

 UPES

For the Award of

Doctor of Philosophy

In

Computer Science

By

VIDYANAND MISHRA

SAP ID (500064225)

 March 2024

Supervisor

Dr. LALIT KANE

Associate Professor, School of Computer Science

 UPES

School of Computer Science (SOCS)

UPES

Dehradun- 248007: Uttarakhand

DECLARATION

I declare that the thesis entitled "Search Space Optimization of CNN

Architecture Using Evolutionary Algorithm" has been prepared by me under

the guidance of Dr. Lalit Kane, Associate Professor, School of Computer

Science, UPES. No part of this thesis has formed the basis for the award of any

degree or fellowship previously.

VroVANAIW MISHRA

School of Computer Science,

UPES,

Bidholi via Prem Nagar, Dehradun, UK, INDIA

iii

CERTIFICATE

iv

ABSTRACT

The Convolutional Neural Network (CNN) is a complex architecture that

performs magnificently in image classification and segmentation problems.

Still, selecting an effective architecture is typically hindered by several

parameters. Empirically, evolutionary algorithms (EA) have been found

adequate in parameter selection and automated neural network search.

However, the huge computational requirements imposed by evolutionary search

make its applicability unexplored. Consequently, the idea of a CNN architecture

selection based on EA is challenging as comparing complex candidate

architectures towards their fitness would involve massive computations. This

study introduces a novel encoding technique that effectively represents complex

convolutional neural network (CNN) architectures. The article provides a

definition of fundamental components used to depict the architecture of a

Convolutional Neural Network (CNN), including the genesis block, transit

block, agile block, and output block. The encoding structure employed in this

study facilitates the generation of chromosomal structures with varying lengths.

These structures are initiated through the utilization of evolutionary algorithms.

A comparative study is offered to evaluate the effectiveness of the encoding

representation in comparison to existing methods. The assessment is predicated

upon various aspects, including the quantity of encoding parameters, the

expenditure associated with training, and the level of efficiency. We propose a

novel framework using an adapted Genetic Algorithm (GA) that automatically

evolves an effective CNN architecture. To enhance the effectiveness of the

genetic algorithm (GA), we address several key aspects. Firstly, we improve the

encoding scheme to better represent the solutions within the genetic framework.

Additionally, we refine the process of initializing the initial population, ensuring

that it is well-suited to the problem domain. Furthermore, we implement a method

for generating diverse offspring, which helps explore the solution space more

thoroughly. Moreover, we propose an optimized fitness function that is finely tuned

to the problem at hand. This tailored fitness function is designed to accelerate

v

convergence while minimizing the risk of getting trapped in local optima. By

strategically adjusting the fitness landscape, we aim to guide the evolutionary

process towards more promising regions of the solution space, thereby enhancing

the overall performance of the genetic algorithm. The method is validated with

the benchmark MNIST, Fashion-MNIST, and CIFAR-10 datasets. The results

are comparable to the best manual and automatic state-of-the-art architectures

regarding accuracy, convergence rate, and consumed computation resources.

vii

TABLE OF CONTENTS

DECLARATION.. ii

CERTIFICATE .. iii

ABSTRACT ... iv

ACKNOWLEDGMENT .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

LIST OF ALGORITHMS ... xii

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivations .. 3

1.2 Problem Descriptions ... 4

1.2.1 Hyperparameter Tuning ... 5

1.2.2 Expensive Evaluation .. 5

1.2.3 Overfitting and Generalization .. 5

1.2.4 Search Space Exploration .. 6

1.3 Objectives .. 6

1.4 Contribution of the Thesis .. 6

1.5 Thesis Outline .. 8

CHAPTER 2: LITERATURE SURVEY ... 9

2.1 Evolution of CNN Architetcure ... 11

2.2 Hyperparameter Selection .. 16

2.2.1 Learning rate .. 17

2.2.2 Number of epochs .. 17

2.2.3 Batch size... 17

2.2.4 Activation function .. 17

2.2.5 Number of hidden layers ... 18

2.2.6 Dropout .. 18

2.2.7 Optimizer ... 18

2.2.8 Loss function ... 18

2.3 Data Preprocessing .. 19

2.3.1 Dataset ... 20

2.4 Optimization algorithms .. 21

2.4.1 Genetic Algorithm ... 24

viii

2.4.2 Particle Swarm Optimization (PSO) .. 25

2.4.3 Differential Evolution (DE) ... 26

2.4.4 Genetic Programming (GP) ... 26

2.4.5 Evolution Strategies (ES) .. 27

2.4.6 Evolutionary Programming.. 28

2.5 Evolving CNN Architecture using Evolutionary Algorithms................................ 28

2.5.1 Encoding Scheme .. 31

2.5.2 Designing and training of CNN architecture ... 35

2.5.3 Hyperparameter optimization .. 44

2.6 Conclusion... 51

CHAPTER 3: ENCODING REPRESENTATION OF CNN

ARCHITETCURE ... 52

3.1 Introduction ... 52

3.2 Linear encoding scheme .. 53

3.3 Hybrid encoding scheme ... 56

3.4 Conclusion... 59

CHAPTER 4: AN EVOLUTIONARY FRAMEWORK FOR

DESIGNING ADAPTIVE CONVOLUTIONAL NEURAL NETWORK

…………….. 60

4.1 Introduction ... 60

4.2 Algorithm overview .. 60

4.2.1 Population Initialization ... 62

4.2.2 Fitness function.. 63

4.2.3 Offspring generation .. 64

4.3 Conclusion... 65

CHAPTER 5: EXPERIMENTAL RESULTS ... 67

5.1 Introduction ... 67

5.2 Discussion ... 69

5.3 Conclusion... 78

CHAPTER 6: CONCLUSION AND FUTURE SCOPE 79

6.1 Summary of the Thesis .. 80

6.2 Future work .. 83

REFERENCES ... 86

LIST OF PUBLICATIONS .. 98

ix

LIST OF FIGURES

Figure 1.1 Representation of CNN architecture, including convolutional layer,

pooling layer, the fully connected layer where a combination of convolution and

pooling layer represents feature learning and fully connected is used for

classification .. 3

Figure 2.1 Comparisons of various CNN architectures under the ImageNet

dataset .. 13

Figure 2.2 Examples from CIFAR-10 data sets ... 20

Figure 2.3 Examples from MNIST data sets ... 21

Figure 2.4 Examples from Fashion_MNIST data sets 21

Figure 2.5 Classification of metaheuristic approach of optimization 23

Figure 2.6 Categories of evolutionary algorithms regarding the search strategies

.. 24

Figure 2.7 Flow chart of genetic algorithm ... 25

Figure 2.8 GA, particle swarm optimization (PSO), genetic evolution (GE),

genetic programming (GP), evolution strategy (ES), differential evolution (DE),

memetic algorithm (MA), and others that do not suit these categories[4]. 29

Figure 2.9 Evolution of deep CNN architecture .. 30

Figure 2.10 Methodology to represent CNN parameters selection using

evolutionary algorithms and input data set .. 31

Figure 2.11 An example of CNN architecture representation using a fixed-

length encoding scheme. The length of the chromosome is 8 and the mutation

and crossover operator is defined to regenerate a new population of the same

length [4]. ... 32

Figure 2.12 Block diagram of the encoding representation of CNN architecture

in literatures reviewed; (a) GACNN [5], (b) CGP-CNN [6], (c) CNN-GA [1],

(d) Genetic CNN [7] .. 34

Figure 2.13 Comparison of evolutionary CNN architecture under CIFAR-10

dataset using genetic algorithm .. 41

Figure 2.14 Comparisons of evolved architectures under CIFAR-10 dataset . 48

x

Figure 3.1 Comparison of various encoding schemes under training in CIFAR-

10 dataset using genetic algorithm; (a) Accuracy achieved, (b) Number of

parameters used, (c) Error rate and training cost ... 55

Figure 3.2 Decoded architecture of encoding representation “256-512-max-

max-512-256” .. 55

Figure 3.3 Hybrid encoding (a) Block diagram of the proposed encoding

representation (b) CNN architecture of corresponding proposed encoding

scheme [92] .. 58

Figure 4.1 Flow chart of evolutionary algorithms ... 60

Figure 5.1 Comparison between different evolutionary CNN algorithms using

CIFAR-10 datasets. .. 69

Figure 5.2 The proposed algorithm's evolutionary trajectory in discovering the

best CNN architecture on the MNIST dataset; (a) Avg accuracy (b) Top

accuracy. .. 74

Figure 5.3 The trajectory of the proposed algorithm as it discovers the optimal

CNN architecture on the CIFAR10 dataset. .. 75

Figure 5.4 Comparison between different evolutionary CNN algorithms using

CIFAR-10 datasets ... 75

 Figure 5.5 Comparing the evolutionary trajectory of the proposed algorithm

with CNN-GA and Genetic CNN to determine the optimal CNN architecture

for the CIFAR10 dataset. ... 76

Figure 5.6 The evolutionary trajectory of the proposed algorithm in discovering

the best architecture of CNN on the Fashion MNIST dataset 76

Figure 5.7 Comparison between different evolutionary CNN algorithms using

MNIST datasets ... 77

Figure 5.8 The trajectory of the proposed algorithm as it discovers the optimal

CNN architecture on the MNIST dataset. .. 77

xi

LIST OF TABLES

Table 2.1 Manually designed CNN architectures are compared based on

parameters, accuracy and depth. ... 14

Table 2.2 Dataset used in different manual and automatic CNN architecture for

Image classification ... 21

Table 2.3 Methodology used to represent CNN architecture in existing encoding

techniques .. 34

Table 2.4 Comparisons of recent evolutionary architectures based on CIFAR-

10, CIFAR-100, and MNIST datasets.. 42

Table 2.5 Performance comparison of CNN hyperparameter optimization using

evolutionary algorithms ... 45

Table 2.6 Comparison of manual and automatic architectures based on different

evolutionary algorithms ... 49

Table 3.1 Comparative analysis of existing encoding techniques 53

Table 5.1 The classification accuracy comparison on the CIFAR-10 datasets

between the proposed algorithm and its contemporary contemporaries [102].

.. 68

Table 5.2 Evolution of CNN model using MNIST dataset with population

size=5, epoch 40, and generation=10 ... 72

Table 5.3 Evolution of CNN model using Fashion_MNIST dataset with

population size=5, epoch 10, and generation=10 .. 73

xii

LIST OF ALGORITHMS

Algorithm 1 Framework of the proposed algorithm using EA 61

Algorithm 2 Population Initialization ... 62

Algorithm 3 Fitness function ... 64

Algorithm 4 Offspring generation .. 65

xiii

LIST OF ABBREVIATIONS

Acronym Meaning of Abbreviation

AI Artificial Intelligence

AE Auto Encoder

AP Average Precision

CNN Convolutional Neural Networks.

COCO Common Objects in Context

DE Differential Evolution

DBM Deep Boltzmann Machines

DCNN Deep Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

EA Evolutionary Algorithm

EP Evolutionary programming

ES Evolution strategies

FRRN Full Resolution Residual Networks

GA Genetic Algorithm

GP Genetic Programming

GPU Graphics processing unit

ILSVRC Image Large Scale Visual Recognition Challenge

LSTM Long Short Term Memory

MA Memetic Algorithm

MLP The Multilayer Perceptron

NAS Neural Architecture Search

xiv

NN Neural Network

PSO Particle Swarm Optimization

RBM Resitricted Boltzmann machine

ReLU Rectified Linear Unit

RU ResNet Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SVM Support Vector Machine

SD Standard Deviation

1

CHAPTER -1

1 INTRODUCTION

Convolutional Neural Networks (CNNs) belong to the class of supervised deep

learning algorithms [8]. The aforementioned algorithms have demonstrated

exceptional proficiency in various domains such as computer vision, speech

recognition, visual or image recognition, image segmentation, and classification

issues [9-11]. The architectural design of the Convolutional Neural Network

(CNN) is composed of several key components, namely the convolutional layer,

pooling layer, fully connected layer, and their intricate interconnections. Each

layer is defined with some fixed set of operations to train the features from input

training data, which helps to predict the output from the test data set. The

convolutional layer's primary functions are feature extraction, while the pooling

layer is used to remove redundant training information. The fully connected

layer is utilized to compress the features and predict the output based on the

number of classes. The CNN's efficiency depends on factors such as architecture

selection [12-13] and hyperparameter selection [14-19]. The range of

parameters in the architecture increases with model complexity, such as depth

and width. Therefore, it requires more time and resources to train the complex

models. The dataset size, pixel size, number of classes, and distribution play a

crucial role in designing and training an efficient model. The performance of

the model may suffer from overfitting if the training dataset is small and may

suffer from underfitting in a linear model. It is particularly challenging to

collect large and equally balanced datasets in some domains such as medical

and defense; consequently, we also require designing a CNN architecture that

works effectively with adaptive data sets.

In CNN, we pass input image as raw pixel data, which helps to learn the model

using feature extraction in different layers, as shown in Figure 1.1. The CNN

architecture representation comprises a variety of combinations of

convolutional layers, pooling layers, and fully connected layers. The

2

convolutional layers consist of multiple two-dimensional matrices known as

filters that can update using backpropagation on every iteration. Initial few

convolutional layers are accountable for identifying low-level features of

images like vertical and horizontal edges. In this layer, filters slide horizontally

and vertically to scan the input images, and the weight matrices filters is

multiplied with the input image in convolution operation. After that, the value

of the filters is modified with each backpropagation operation using a gradient

value. After convolution operation, the pooling layer is used, where we apply

various mathematical functions to reduce the feature value of the input matrix's

selected size and shift based on stride value. It helps to reduce redundancy using

various functions max, min, and average and recombine minor features into a

major one. After that, the activation function is used to increase the nonlinearity.

As per requirement, multiple activation functions such as tanh [20], ReLU [21],

and sigmoid [22] are used on the different middle and last convolutional layers.

The flattened output from the preceding pooling or convolutional layer is

thereafter transmitted to the fully connected layer. The dimensionality of images

is reduced through the utilization of fully connected layers, which effectively

decrease the amount of pixels involved in convolutional-max pooling

procedures. The last layer, subsequent to the fully connected layers, utilizes the

softmax activation function [23] to ascertain the likelihood that the input is

associated with a particular class (classification). After obtaining the output

predictions, a loss function is computed to quantify the discrepancy between the

predicted outputs and the actual values. The network is subsequently trained by

the utilization of backpropagation, a technique in which the error is propagated

in reverse through the layers. The weights of the network are then changed using

optimization techniques such as stochastic gradient descent (SGD) or its various

adaptations. The process of forward pass (computing the output) and backward

pass (updating the weights) is repeated iteratively until the network converges

or a predefined stopping criterion is reached. Convolutional Neural Networks

(CNNs) are utilized in other domains beyond image classification. These

domains encompass speech recognition, natural language processing, video

3

processing [24], image enhancement, and image segmentation [25].

Figure 1.1 Representation of CNN architecture, including convolutional layer,

pooling layer, the fully connected layer where a combination of convolution and

pooling layer represents feature learning and fully connected is used for classification

1.1 Motivations

CNN architectures consist of several hyperparameters, which need to be tuned

and optimized to construct an optimal architecture. The hyperparameters

comprise a range of criteria, including the total number of filters, dimensions of

the filters, the magnitude of the stride, the kind of pooling function, the choice

of activation function, the learning rate, and several more. The task of selecting

hyperparameters is a computational challenge, as it falls within the category of

NP-hard problems [26]. This challenge arises due to the vast array of potential

values and the presence of several parameters involved in the selection process.

The achievement of an ideal architecture necessitates substantial human

involvement, specialized knowledge in the relevant field, and a process of

experimentation and refinement in the selection of hyperparameters. An

automatic model is needed to design the architecture based on the input data

values and efficiently identify a set of hyperparameters and their values. In order

to assess the effectiveness of a Convolutional Neural Network (CNN)

architecture using specific hyperparameters, it is customary to train and test the

network on a substantial dataset. The computing cost and time required for this

procedure might be significant, hence imposing constraints on the number of

evaluations that can be executed within a metahurestic algorithm.

4

1.2 Problem Descriptions

In recent years, there has been a growing body of research [27-32] focused on

the automated selection of Convolutional Neural Network (CNN) architectures

for image classification tasks. This article primarily focuses on several

evolution-based algorithms [7] utilized for the purpose of creating and training

from the ground up. In recent studies, few articles on NAS [33] and ENAS [34]

have worked on the same domain. However, they primarily focus on comparing

architecture selection techniques rather than optimization of training and hyper-

parameter algorithms. The researchers have started working on heuristic-based

algorithms to rectify these issues. Various heuristic-based evolutionary

methods, including genetic algorithm (GA) [35], particle swarm optimization

(PSO) [36], genetic programming [37], and differential evolution (DE) [38],

have been employed to address the issue of hyper-parameter optimization.

These population-based algorithms work on the concepts of the biological

behavior of evolution. When using evolutionary algorithms in this domain, we

require some encoding technique to represent the CNN architecture in terms of

the input population. The classification of encoding techniques is based on two

types, namely fixed-length and variable-length encoding schemes. The fixed-

length encoding strategy is a straightforward method to execute when the

maximum depth of a convolutional neural network (CNN) is predetermined.

However, it has the potential to limit the extent of exploration [39-41]. The

depth is adaptive in the variable-length encoding scheme, which means it can

explore wider depending on requirements. Therefore variable length encoding

scheme is more suitable in architecture evolution. Additionally, we must define

all the functions again as per the encoding. The population is initialized

randomly in an encoding scheme that makes it more generic in available search

space and easy to use. After that, the encoded architecture is passed to an

algorithm evaluated based on the dataset and fitness function. In this research

accuracy (1-RMSE) is considered as a fitness function. Based on the fitness

value, a few CNN architectures are selected to have high accuracy for the next

5

iteration. The next iteration generates the new population using mutation and

crossover operators defined in the algorithm. It helps to identify new

populations without stuck in local optima. After multiple iterations, this process

will converge the automatically generate the most suitable CNN architecture in

defined constraints.

1.2.1 Hyperparameter Tuning

CNN architectures typically have numerous hyperparameters, such as the

number of layers, filter sizes, learning rates, sample sizes, etc. The high

dimensionality of the hyperparameter space makes the search process more

challenging and computationally expensive.

1.2.2 Expensive Evaluation

In order to assess the effectiveness of a Convolutional Neural Network (CNN)

architecture using specific hyperparameters, it is customary to train and test the

network on a substantial dataset. This process can be computationally expensive

and time-consuming, limiting the quantity of assessments that can be

undertaken within a genetic algorithm.

1.2.3 Overfitting and Generalization

Convolutional Neural Network (CNN) architectures have a tendency to exhibit

overfitting, a phenomenon characterized by the model's ability to achieve high

performance on the training dataset but perform badly on unseen or test data.

Relying exclusively on the performance of the training data for the selection of

hyperparameters may result in unsatisfactory generalization. It is imperative to

exercise caution in order to ascertain that the chosen hyperparameters exhibit

strong generalization capabilities when applied to data that has not been

previously seen.

6

1.2.4 Search Space Exploration

 CNN architectures can have a vast search space with a multitude of possible

hyperparameter combinations. Genetic algorithms need to effectively explore

this space to find optimal or near-optimal solutions. However, due to the high

dimensionality and complex interactions, it can be challenging to achieve

thorough exploration within a reasonable computational budget.

1.3 Objectives

Propose a methodology to design an effective CNN model using evolutionary

algorithms for the given dataset.

Sub-Objectives

1. Design an encoding strategy to represent CNN architecture building

blocks and their interconnections.

2. Propose a method to fine-tune hyperparameters of the CNN model using

evolutionary algorithms for the given dataset.

3. Comparative analysis of the proposed CNN model with the existing

state-of-the-art techniques in terms of classification accuracy and

number of parameters.

1.4 Contribution of the Thesis

The general goal of this thesis is to propose a methodology to design an

automatic CNN model using genetic algorithms using a given dataset. The

research contribution is summarized below.

To begin we proposed scheme employs a variable-length encoding scheme that

represents the depth as well as the width of the architecture. The main advantage

of the proposed encoding scheme is that it can represent architecture with a

combination of two different layers. It makes the representation simple and one

can increase the depth of architecture easily. Also, due to fewer parameters, one

can define different evolutionary operations like mutation and crossover

7

efficiently. The scheme also supports increasing the complexity within the

block. In the agile block, it can generate filter size and depth randomly and

thereby increases complexity. The proposed scheme supports a hybrid-encoding

scheme that utilizes binary as well as decimal representation. The encoding

scheme offers the maximum choice of exploration in depth and width as well as

faster optimization. We pass our initialized encoding method in evolutionary

algorithms to optimize for better architecture.

Second, we proposed a novel framework to evolve CNN architectures using

genetic algorithms. The process encompasses the exploration and refinement of

the architecture's hyperparameters, which encompass various aspects such as

the number of layers, types of layers, sizes of filters, and patterns of

connectivity. By iteratively applying selection, genetic operators, and

evaluation, the genetic algorithm explores the search space of CNN

architectures, favoring the ones that perform better on the defined metrics.

Third, the proposed methodology applies the population initialization, fitness

calculation and offspring generation of the CNN architecture. Initially, the

number of population and the depth of each population is selected randomly. In

the selected population, the first layer is fixed as a convolutional layer; then,

convolutional and pooling layers are determined randomly with equal

probability. The convolutional layer's filter count is randomly chosen in the

given range. An individual's CNN is initially decoded using a predetermined set

of hyperparameter parameters. CNN decoding is trained with training data, and

accuracy is used to determine fitness. Because the training of CNN is a time-

taking task, we used half of the dataset for initial training to make it efficient.

For offspring, generation two parents are selected based on which of two

randomly selected individuals is more suitable. We build a new set of

populations with equal probability by utilising mutation and crossover

processes. The purpose of mutation is to explore the search space by introducing

small random perturbations to the existing architectures. Mutation helps to

prevent premature convergence and allows the algorithm to potentially discover

8

novel and beneficial architectures. The probability of mutation determines how

frequently mutation is applied. A higher mutation rate increases the chances of

mutation occurring. The objective of crossover is to generate offspring that

acquire advantageous characteristics from both progenitors, hence potentially

resulting in enhanced designs. The location(s) or process at which genetic

material is exchanged between parental organisms is referred to as the crossover

point(s). Various crossover tactics can be utilized, including single-point

crossover, uniform crossover, and multi-point crossover.

The proposed methodology is assessed and contrasted with 11 contemporary

peer contenders, comprising of four partial tuning and seven automatic

algorithms for determining the architectures of CNNs. The empirical findings

obtained from conducting experiments on the MNIST, Fashion_MNIST, and

CIFAR10 datasets demonstrate that the proposed methodology has the

capability to autonomously create deep convolutional neural network (DCNN)

architectures that are on par with, or perhaps beyond, the most advanced models

currently available.

1.5 Thesis Outline

The following is an outline of the thesis. The second chapter delves into the

fundamental components of computer vision technologies, starting with manual

deep convolutional neural network designs employed in image classification.

The different evolutionary algorithm based CNN architecture and MNIST,

Fashion_MNIST, and CIFAR10 datasets are introduced in Chapter 3. A novel

framework for designing CNN architecture using genetic algorithm is put

forward in Chapter 4. In Chapter 5, we discussed the hyperparameters required

to fine-tune the model. Furthermore, the suggested architecture's performance

is evaluated and compared to existing approaches based on accuracy, epoch,

number of generation and GPU days required. In Chapter 6, we summarize the

thesis, reach conclusions, and talk about future research.

9

CHAPTER -2

2 LITERATURE SURVEY

The convolutional neural network is structured with a layered architecture that

includes a convolutional layer, a pooling layer, and a fully connected layer. The

raw pixel data from the input image is transmitted to a Convolutional Neural

Network (CNN), facilitating the extraction of features at several levels to

enhance the learning process of the model. Weighted filters are employed within

the convolutional layer to extract distinctive characteristics from the input data,

while the activation function is utilized to add nonlinearity. The pooling layer

serves the purpose of eliminating redundant features from the convolutional

layer by the utilization of procedures such as minimum, maximum, or average.

The resulting matrix is converted into a unidimensional vector and utilized as

input for a fully connected neural network layer during the training process.

Numerous hyperparameters must be altered and enhanced to improve the CNN

model. The filter size, the number of filters, pooling function, learning rate,

activation function, stride size, and many more hyperparameters were among

them. Due to huge parameters, researchers working on generating a CNN

architectural design need help choosing appropriate hyperparameters. The

complexity of the CNN architecture is a critical factor while learning

complicated features from training datasets. As an architecture's depth and

interconnections increase, so does its parameters and complexity. We need

methods to automatically discover the hyperparameters and CNN architecture

to solve the problem.

The performance of CNN architecture is determined by accuracy, training cost,

and parameter count. The accuracy is mostly determined by the training dataset

(image size, quality, and distribution) and the complexity of the architecture.

However, the training cost is mostly associated with parameters such as depth

of architecture, size of kernels, number of kernels, learning rate, epoch,

activation function and many more. Hence, selecting an accurate architecture is

10

tedious, as it takes knowledge of the CNN domain and several trial-and-error

combinations for hyperparameter tuning.

In recent years, several fascinating studies on deep CNNs have been carried out

that elaborate on the crucial elements of CNN and their alternatives. There exist

quite a few survey articles on CNN using evolutionary algorithms (EA) that

focus on a certain category of optimization problems. The survey conducted in

reference [42] highlights the inherent taxonomy observed in manually designed

deep convolutional neural network (CNN) architectures. Consequently, the

CNN architectures are categorized into seven distinct groups. The fundamental

principles behind these seven categories encompass spatial exploitation, depth

perception, multi-path propagation, breadth of coverage, feature-map

utilization, channel enhancement, and attentiveness. This study has identified a

significant difficulty, namely that even minor adjustments to hyper-parameter

values can have a substantial influence on the overall performance of a

Convolutional Neural Network (CNN). Consequently, the meticulous choice of

hyper-parameters emerges as a significant aspect of the design process,

necessitating the implementation of a suitable optimization approach. In recent

works, EA is gaining momentum for architecture selection and hyperparameter

optimization in generic deep neural networks (DNN) models. A survey [43]

described the EAs approach to designing and configuring deep neural network

architecture. It has highlighted the strength of EAs in investigating the

challenges involved in suitable DNN architecture design and training. The

authors included designing and training different DNNs architectures, including

CNNs, Recurrent neural networks (RNNs), Deep Boltzmann Machines

(DBMs), Resitricted Boltzmann machines (RBMs), and Auto encoders (AEs).

The paper includes the effectiveness of EAs in deep learning; however, more

explanation is still needed why some EAs algorithms perform better than others.

11

2.1 Evolution of CNN Architetcure

The inception and advancement of Convolutional Neural Network (CNN)

architecture began in the 1980s. The initial proposal for a multilayered

architecture, known as ConvNet, was put up in 1989 by LeCun. Numerous

architectures were proposed after ConvNet by modifying the existing

architecture. However, it could not solve real-life problems due to limited

computation power and the limited dataset. In 1998, LeCun proposed a five-

layered architecture known as LeNet-5 [44], primarily used for digit

classification. However, it could not gain much popularity in the different

domains because the bounded computational power and the standard datasets

are unavailable. After a decade, AlexNet [45] (a variant of CNN) brought the

main breakthrough in the performance of the CNN architecture in ILSVRC

(Image Large Scale Visual Recognition4 Challenge) in 2012. From 2012 until

now, several attempts have been conducted to improve the accomplishment of

CNN architecture. Several state-of-the-art convolutional neural network (CNN)

architectures have been proposed, including VGG Net [46], ResNet [47],

GoogleNet [48], XceptionNet [49], and others. These architectures have

demonstrated significant advancements in image classification tasks through

various approaches, such as increasing the depth or width of network layers or

modifying the network parameters.

The LeNet architecture emerged as the early convolutional neural network

(CNN) model that shown promising outcomes in effectively addressing the

challenge of digit recognition. The previous architectures considered each

image pixel as a single unit for input in CNN architecture, which increased the

number of input parameters and made it less efficient. LeNet has worked on this

limitation by evaluating the correlation between neighboring pixels, reducing

the number of parameters in the convolution operation. LeNet architecture was

simple and linear, restricting its effectiveness to simple grayscale digit

classification problems instead of generic image classification tasks.

Krichevsky et al. proposed AlexNet architecture in 2012. It enhances the feature

12

extraction capability of CNN architecture by making it deeper into up to 8

layers. However, as the depth increases, the number of parameters increases,

making architecture more complex. Several problems arise with the complexity

of architecture and smaller datasets, such as the overfitting and vanishing

gradient. AlexNet solved the problem of overfitting up to some level by

increasing the depth of the architecture using the concept of random skip

connections. Additionally, it uses a ReLU activation function to reduce the

vanishing gradient problem [50]. It uses a large filter size (11×11, 7×7, and 5×5)

to improve the learning accuracy.

Simon Yan et al. proposed a 19-layer deep architecture named VGGNet. The

problem of AlexNet is complex heterogeneous filter size (7×7, 11×11, 5×5) in

different layers of the CNN architecture. VGGNet architecture has solved this

problem by keeping filter size 3×3 to make it homogenous. It improves the

computation cost with similar accuracy by reducing the calculations involved.

VGGNet became popular because of its homogenous structure. It also uses a

new max pool operation in the pooling layer. VGGNet architecture resulted in

improved performance concerning image classification tasks by incorporating

a large number of parameters. It is still not suitable for low resource systems

due to the involvement of increased computational cost. The number of

parameters in VGGNet is approximately 138+ million, making it

computationally high. To solve this problem, GoogleNet introduced a new

inception block that replaced the existing convolution layer. It uses 1×1

convolution to optimize the number of matrix multiplications. It also removes

the fully connected layer and uses the concept of sparse connections with

average pooling to reduce the number of parameters. It reduces the total

parameters from 138 million to 4 million with promising efficiency. The main

limitation of Google Net is the heterogeneous structure of the filters in the

inception block.

There was an early perception that the CNN architecture's depth closely

correlated with the architecture's ability to learn. With the depth of architecture,

13

vanishing gradient problems arise. Therefore, training deep neural networks is

challenging due to the vanishing gradient problem. The ResNet architecture was

developed in 2016 to reduce the vanishing gradient issue with increased depth

to solve that problem. In ResNet architecture, a residual block is introduced,

employing the concept of skip connection. ResNet introduces a 50/101/152

depth architecture that performs remarkably in the benchmark image dataset

COCO [50]. However, due to the huge depth and complex architecture, the

number of parameters increases linearly, not exponentially. As part of

architecture design and to address the issue of vanishing gradients in deep CNN

architectures, DenseNet [51] was proposed in 2017. The gradient propagation

and classification accuracy are improved by creating shorter paths between a

layer and its subsequent layer closer to the output. It is used to connect every

layer with the next subsequent layers directly, which helps to concatenate

features directly. Supposing L is the total number of layers in the architecture,

then a total of L (L+1)/2 connections will be possible in the DenseNet. Table

2.1 illustrates the comparative analysis of the performance of various CNN

architectures designed manually. The Accuracy of the CNN architecture

depends on numerous factors such as topology (convolution layers, pooling

layers, and their interconnections) and learning parameters (including weight,

bias, and hyperparameters like activation function, filters size, number of filters,

and many more).

 Figure 2.1 Comparisons of various CNN architectures under the ImageNet dataset

14

Table 2.1 Manually designed CNN architectures are compared based on parameters,

accuracy and depth.
R

ef
er

en
ce

 a
n

d
 Y

ea
r

A
rc

h
it

ec
tu

re

N
a

m
e

N
o

.
o

f
P

a
ra

m
et

er
s

(i
n

m
il

li
o

n
s)

D
a

ta
 S

et

A
cc

u
ra

cy
/

E
rr

o
r

D
ep

th

R
el

e
v

a
n

t

R
ev

ie
w

 F
in

d
in

g
s

[44],

1998
LeNet 0.060 MNIST 0.95 5

 First effectively designed

CNN architecture in the real-

time data set.

 Large filter sizes are used.

[45],

2012
AlexNet 60 ImageNet 16.4 8

 It increases the depth of

architecture for real-time

RGB ImageNet data set.

 ReLU activation function is

implemented for enhancing

non-linearity.

 Dropout function is applied

to reduce the model

complexity.

[46],

2014
VGG 138 ImageNet 7.3 19

 The architecture is made

complex by increasing the

number of parameters to

enhance the accuracy.

 Homogenous topology is

observed throughout the

architecture.

 Filter Size is reduced to

minimize the computation of

the model.

[48],

2015

GoogLe

Net
4 ImageNet 6.7 22

 It introduces the concept of

blocks in the CNN

architecture.

 Apply network in network

concept.

 Used 1×1 convolutional filter

[47],

2016
ResNet

25.6

1.7

ImageNet

CIFAR-10

3.6

6.43

152

110

 Introduced skip connection to

minimize the size of the total

parameter.

 Residual learning is used.

15

[98],

2016

Wide

ResNet
36.5

CIFAR-10

CIFAR-

100

3.89

18.85

28

-

 The width of the architecture

has been increased, resulting

in a more complex

architecture.

[49],

2017
Xception 22.8 ImageNet 0.945 126

 Convolution options are

divided into two categories in

this architecture. The depth-

wise convolution method is

used first, followed by the

point-wise convolution

method.

[101],

2017

Squeeze

&

Excitatio

n

Network

s

27.5 ImageNet 2.3 152

 Used SE block before

convolution layer to suppress

less important feature.

 Adapts the feature maps of

each layer.

[51],

2017

DenseNe

t

25.6

25.6

CIFAR-10

CIFAR-

100

3.46

17.18

190

190

 Multiple layers are connected

together for Cross-layer

information flow.

 The amount of feature maps

at each layer has resulted in a

significant rise in parameters.

 Decision layers can access

characteristics at both the low

level and high level.

15.3

15.3

CIFAR-10

CIFAR-

100

5.19

19.64

250

250

However, in Figure 2.1, the main concern is discussed that the association

between accuracy with the number of parameters and the depth of CNN

architecture is abrupt. Initially, from AlexNet to VGGNet architectures, the

architecture complexity increased with depth, increasing the number of

parameters. Therefore the vanishing gradient problem occurs. Due to the

vanishing gradient, the model's accuracy is declining even with deeper and more

complex architecture. ResNet and GoogleNet applied the skip connection

concept that reduces the number of parameters and minimizes the vanishing

gradient problem. Another concern is that the selection of parameters and their

value is also challenging as the number of parameters is huge and different in

nature. However, selecting parameters for the suitable architecture design is still

16

challenging. Manually identifying the appropriate number of parameters is

extremely difficult as the number of parameters is huge, and its relationship with

accuracy is uncertain. The metaheuristic optimization algorithms assist us in

finding a suitable solution for the above problem as those algorithms are

gradient-free and can escape to local optima.

2.2 Hyperparameter Selection

Despite the fact that CNN is quite powerful, its effectiveness or accuracy is

dependent on the parameters selection. When selecting the convolutional neural

network parameters, the optimal combination of several parameters is usually

used. The CNN model's efficiency is determined by two major factors. The first

is architecture selection, which includes architectural depth, the number of

layers (such as a convolutional layer, pooling layer, fully connected layer, and

their interconnection). Selection and initialization of hyper-parameters such as

the number of kernels, kernel size, stride, padding, pooling operation, optimizer,

activation function, number of hidden layers, dropout, batch normalisation,

learning rate, loss function, embedding vector size, and epoch number are also

essential. The kernel, a 2-D weight matrix, is used for feature extraction in the

convolutional layer. The convolution process compresses the input matrix. To

address these issues, we can add rows and columns to the input image before

convolution, which is known as padding. The amount of pixels we will jump

when we convolve the filter/kernel is determined by stride, which we used when

doing the convolution procedure. In addition to convolutional layers, pooling

layers are frequently used by CNNs to reduce input size, accelerate

computation, and strengthen some of the features it detects. We can use max,

average, or min pooling operation in the pooling layer. After selecting CNN

architecture (layers and their connection), a few other hyperparameters are

required to set before training. The following are as follows:

17

2.2.1 Learning rate

The optimization algorithm's learning rate determines how frequently the

weight is updated. We can select a constant learning rate, a learning rate that

gradually declines, momentum-based approaches, or adaptive learning rates

depending on the optimizer we use.

2.2.2 Number of epochs

The number of epochs refers to how frequently the neural network processes

the entire training data. We should increase the number of epochs as soon as

there is a slight difference between the training and test errors.

2.2.3 Batch size

The batch size specifies how many samples will be sent over the network at the

same time. Large data sets necessitate slow CNN training. As a result, it is

necessary to seek a faster optimization technique. It is recommended that batch

size should be a power of two to run code faster.

2.2.4 Activation function

The activation function of the model introduces non-linearity. Multiple

activation functions, such as ReLU [21] in Eq 1, sigmoid [22] in Eq (2), tanh in

Eq(3) [20], and others, are used in different layers of CNN architecture. The

output of Relu lies in all positive value, sigmoid value lies in range (0,1)

whereas tanh lies in range -1 to 1. Sigmoid function mostly uses in outer layer

in binary classification problem where as relu and tanh uses in intermediate

layers.

𝑓(𝑥) = max(0, 𝑥) … … … … … … … … … (1)

 𝑓(𝑥) = 1/(1 + 𝑒−𝑥)……………………. (2)

 𝑓(𝑥) = ((𝑒𝑥- 𝑒−𝑥)/ (𝑒𝑥+ 𝑒−𝑥))………….(3)

18

2.2.5 Number of hidden layers

It is typically a good idea to keep adding layers until the test error stops

improving. The trade-off is the cost of computationally training the network. A

small number of units can result in underfitting, whereas a larger number of

units is usually not hazardous with correct regularisation.

2.2.6 Dropout

The utilization of dropout [52] has emerged as a popular regularization

technique in deep neural networks, serving the purpose of mitigating overfitting.

This technique selectively eliminates neural network units based on their

probability of removal.

2.2.7 Optimizer

Optimizers are algorithms or techniques that modify neural networks' weights

and learning rates to minimize losses. Multiple optimization methods such as

SGD [53], Adam [54], Adagrad [55], AdaDelta [56], or RMSProp [57] are used

in CNN architecture. Adam is the most effective optimizer if one wants to train

the neural network in less time and more efficiently.

2.2.8 Loss function

The disparity between the output generated by the Convolutional Neural

Network (CNN) model and the desired output is quantified through the

utilization of a loss function within a neural network. The gradients necessary

for updating the weights can be derived from the loss function. The cost is

calculated by computing the mean of all incurred losses. Within the context of

Convolutional Neural Network (CNN) architecture, it is common to employ

several well-known loss functions, namely Categorical Cross-Entropy [58],

Sparse categorical cross-entropy [59], and Mean squared error [60].

19

2.3 Data Preprocessing

The complexity of the architecture and the input data impact how well CNN

performs. Image preprocessing is needed before being used for model training

to improve CNN learning. Images originate from several sources of different

sizes and shapes. Making all images the same size is the initial step in data

preprocessing. There are multiple methods of image preprocessing available

such as transformation, normalization, and augmentations. Any image alteration

in form and shape is referred to as morphological transformation. Erosion,

dilation, opening, and closing are common morphological transformation

methods. Normalization is another preprocessing method for rescaling the pixel

value in a confined range. The purpose of doing this is to assist with the gradient

propagation problem. Often, the amount of data we have is insufficient to

accomplish training deep neural network models. In these situations, we

undertake data augmentation to expand the dataset. Only the training set should

be used for augmentation, and the validation set should never be used.

Augmentation techniques [66] like flipping, rotating, cropping, translating,

illuminating, scaling, and adding noise generate additional data from raw data,

and significantly enhance the model's accuracy.

CNN architecture solves image classification and segmentation problems in

every domain. The model's accuracy depends on architecture selection and the

dataset. If a fewer number of images, it may get stuck in underfitting. If the

resolution is less, the feature may vanish with the depth of architecture.

Therefore, we required high resolution, huge data size, with balance in every

class for better performance. Some benchmark datasets developed to compare

the performance are shown in Table 2.2 MNIST dataset was the benchmark

dataset for digit classification. The MNIST dataset's complexity is less, so it can

be easily computed with less computation power. It has ten classes with

grayscale images having 60000 training data with pixel size 28×28.

20

Most models are used as a reference for MNIST until the 2012 ImageNet

competition. After that, challenging datasets like CIFAR 10 for classification

into ten classes and CIFAR 100 for classification into hundred classes are used.

2.3.1 Dataset

The CIFAR10 dataset depicted in Figure 2.2, in particular, serves as a

benchmark for image classification, classifying ten different types of natural

objects, including birds, horses, ships, deer, frogs, dogs, trucks, cats, vehicles,

and aeroplanes. It comprises 60,000 RGB images, each 32×32 pixels in size.

Furthermore, there are 50,000 images in the training set and 10,000 in the testing

set. There are the same amount of images in every category. Similarly, the

MNIST dataset, shown in Figure 2.3 is a benchmark for image classification for

identifying digits. It has 70,000 grayscale pictures in total, each measuring

28×28 pixels. Furthermore, the training set consists of 60,000 images, and the

testing set contains 10,000 images. The amount of data in each category is the

same. Also, we used Fashion_MNIST dataset Figure 2.4, as a benchmark for

fashion image classification. It has 70,000 grayscale pictures in total, each

measuring 28×28 pixels. It was created in 2017 and had ten classes.

Furthermore, the training set consists of 60,000 images, and the testing set

contains 10,000 images. The amount of data in each category is the same.

Figure 2.2 Examples from CIFAR-10 data sets

21

Figure 2.3 Examples from MNIST data sets

Figure 2.4 Examples from Fashion_MNIST data sets

Table 2.2 Dataset used in different manual and automatic CNN architecture for Image

classification

Data set
Input size

(Pixels)

No. of

classes

No. of

training

images

No. of

testing

images

Image

type

MNIST [3] 28 × 28 10 60,000 10,000 Grayscale

CIFAR-10 [2] 32 × 32 10 50,000 10,000 RGB

CIFAR-100 [2] 32 × 32 100 50,000 10,000 RGB

ILSVRC 2012 [61] 224 × 224 1000 1.3M 1,50,000 RGB

Fashion MNIST [62] 28 × 28 10 60,000 10,000 Grayscale

2.4 Optimization algorithms

An optimization can be a minimization or maximization issue of any given

function in the defined search space. Numerous categories exist for classifying

optimization algorithms, including gradient-based and gradient-free algorithms,

22

deterministic and stochastic algorithms, trajectory-based algorithms, and

population-based algorithms. Gradient-based algorithms make extensive use of

derivative information to solve differentiable and convex optimization

problems. When functions have discontinuities or multiple local optima exist,

the gradient-based method is ineffective. For optimizing discontinuous

functions, metaheuristic algorithms are more feasible. However, metaheuristic

algorithms have some limitations. It is appropriate to find good answers to

complicated optimization problems within given constraints, but finding

optimal solutions is not guaranteed. There exists no known mathematical model

that can solve all types of optimization problems with improved accuracy. For

example, structure optimization [63], traveling salesman problem [64],

Hamiltonian cycle problem [65], and the halting problem of the Turing machine

[66] are some known as NP-complete problem, which is not solvable in

polynomial time using a deterministic algorithm. Therefore, approximation

algorithms based upon intelligent search are proposed to suggest the correct

solution to a particular NP-complete problem.

The parameters chosen and optimized have an impact on how well the CNN

architecture operates. Because CNN includes many parameters with different

properties, we require optimization methods that can handle both discrete and

continuous variables. The metaheuristic algorithms are classified into two

categories population-based and nature-inspired as shown in Figure 2.5. Any

metaheuristic algorithm will typically consist of two main parts: intensification

and diversification. While diversification by randomness enables the search to

stray from local optima, the best solutions are chosen to guarantee that solutions

will converge to the optimum.

Approximation algorithms start with an initial guess and generate an iterative

sequence with improved results. It uses an objective function to mathematically

optimize the given problem with bounded variables and their condition until

they terminate. The termination condition is based upon the generation number

or target value. The optimization strategy moves from one generation to another

23

based on the suggested optimization algorithm. Most of the strategies use the

objective function's value to calculate the solution's fitness value, subject to the

constraint functions. Approximation algorithms run based on information

gathered from the current generation as well as the previous generation. The

approximation algorithm begins with a random value and generates the

sequence of solutions 𝑥0 , 𝑥1 … … , 𝑥𝑘 such that 𝑓(𝑥𝑖+1) < 𝑓(𝑥𝑖).

Figure 2.5 Classification of metaheuristic approach of optimization

Many meta-heuristic algorithms [67-68] have been proposed to solve hard

mathematical problems in recent decades. The growing power of meta-heuristic

algorithms attracted the attention of researchers. Evolution Algorithms [69-73]

and Swarm Intelligence [74-76] are four broad categories of meta-heuristic

algorithms shown in Figure 2.6. Evolution algorithms are inspired by biological

evolution; their formulation is based upon selection, recombination, and

mutation. At the same time, swarm intelligence is based upon swarms' collective

and independent behavior. Swarm intelligence is a concept that draws

inspiration from the intelligent behavior exhibited by swarms. In this paradigm,

swarms are capable of collectively identifying solutions by using both local and

global best positions, and their velocity is based on distance from the actual

object.

24

Figure 2.6 Categories of evolutionary algorithms regarding the search strategies

Evolutionary algorithms are used to solve gradient-free optimization problems.

It can also be used in a single objective and a multi-objective problem. We

discussed some algorithms with their domain used in optimizing CNN

architecture based on literature as follows:

2.4.1 Genetic Algorithm

A genetic algorithm (GA) [77] is a subset of evolutionary algorithms helpful for

solving multidimensional nonlinear problems. GA is inspired by biological

evolution, and its formulation is based upon selection, recombination, and

mutation operations. A selection operation is defined as selecting a set of an

individual based on a fitness value where a fit individual has more probability

of being selected. Recombination or crossover is an operation to generate a new

individual by recombining two or more individuals based on some

recombination rule. The mutation is a process of introducing diversity in the

solution set by generating some set of values around the selected point. GA

works by applying “random” changes to current solutions to generate new ones.

A fitness function is used to select the best parameters, and solutions

representing the higher fitness value are chosen. GA can initialize its population

randomly with different positions and start optimizing in multiple directions,

making it suitable for multiple-minima problems. It can also help solve the brute

force approach and NP-hard problems. The major drawback of this algorithm is

that it does not guarantee the optimal solution but is close to the optimal one.

25

Additionally, its convergence rate becomes slower when it is closer to the

optimal solution. Nowadays, GA has become extremely popular because of the

neural networks, as the convergence rate of neural networks is slow due to

gradient-decent problems. Moreover, it is likely to stick in local minima due to

multiple minima where GA can help solve the problem. Figure 2.7 represents

the flow chart of the Genetic Algorithm. In the flow chart, different operations

like initialization, mutation, and crossover are represented as square boxes,

where stopping criteria are defined in a rectangular box.

Figure 2.7 Flow chart of genetic algorithm

2.4.2 Particle Swarm Optimization (PSO)

In the Particle Swarm Optimization (PSO) algorithm, each particle is initially

assigned a position and velocity. These values can be modified over the iterations

of the algorithm, depending on the number of iterations. The rate of change is

contingent upon the local acceleration constant 𝑐𝑝 and global acceleration

constant 𝑐𝑔 shown in Eq.1. Another parameter 𝑉𝑖
𝑡+1 represents velocity in the next

iteration, 𝑤 is the weight value, 𝑟𝑝 represents the random value for local

convergence in the range [0, 1], similarly, 𝑟𝑔 represents global randomly generated

26

value in the range [0, 1] shown in Eq.1. As shown in Eq.2, variable 𝑝𝑖
𝑡+1 represents

the position vector that is updated with the previous position and current velocity.

The 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
 represents the local best position whereas 𝑔𝑏𝑒𝑠𝑡𝑖𝑑

 is the global best

position vector. Additionally, as shown in Eq.3, 𝑤(𝑖𝑡𝑒𝑟) is an adaptive weight

value that is bounded in the given range [𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥]. The 𝑤𝑚𝑎𝑥 is the maximum

weight value, 𝑤𝑚𝑖𝑛 is the minimum, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum iteration defined

and 𝑖𝑡𝑒𝑟 is its current iteration. Our target is to reach the global best from the local

best in a minimum number of iterations.

𝑉𝑖
𝑡+1 = 𝑤 × 𝑉𝑖

𝑡 + 𝑐𝑝 × 𝑟𝑝 × (𝑝𝑏𝑒𝑠𝑡𝑖𝑑
− 𝑝𝑖

𝑡) + 𝑐𝑔 × 𝑟𝑔 × (𝑔𝑏𝑒𝑠𝑡𝑖𝑑
𝑝𝑖

𝑡) (1)

𝑝𝑖
𝑡+1 = 𝑝𝑖

𝑡 + 𝑉𝑖
𝑡+1 (2)

𝑤(𝑖𝑡𝑒𝑟) = (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) × (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) + 𝑤𝑚𝑖𝑛 (3)

2.4.3 Differential Evolution (DE)

Differential evolution (DE) [78] is a heuristic technique that allows nonlinear

and non-differentiable continuous space functions to be globally optimized. The

advantage of DE algorithms is simplicity and few control variables that need

minimal controls to direct the minimization. It has good convergence qualities

or the global minimum's constant convergence in successive independent trials.

The classic differential evolution (DE) algorithm requires only three control

parameters: the scale factor, crossover rate, and population size. Here, an initial

population of real-valued decision vectors commonly referred to as

chromosomes are randomly chosen to start the process. In DE, the mutation

operator is used to produce new suitable solutions during each iteration.

Additionally, the crossover technique is used to expand the diversity of the

modified parameter vectors.

2.4.4 Genetic Programming (GP)

Genetic programming (GP) [71] uses an algorithm that uses crossover, random

mutation, a fitness function, and several generations of evolution to solve the

27

optimization problem. This algorithm is inspired by biological evolution and

its basic mechanics. A genetic program is represented as a tree structure of

actions and values, which is commonly referred to as a hierarchical data

structure. In the field of Genetic Programming (GP), the procedures entail the

selection of the most optimal programs for crossover reproduction and

mutation, guided by a pre-established fitness measure that is often proficient in

the desired task. In the field of genetic programming (GP), the crossover

operation is employed to generate new and distinct children by exchanging

random segments between selected pairs of parents. These offspring thereafter

contribute to the formation of the next generation of programs. Mutation is the

term used to describe the process of substituting a randomly selected component

within a program with another randomly selected component. In the field of

Genetic Programming (GP), the subsequent generation emulates certain

programs from the present generation that were not selected for reproduction.

Subsequently, the succeeding iteration of programs undergoes cyclic selection

and other related procedures.

2.4.5 Evolution Strategies (ES)

Evolution strategies (ES) [70] is a subclass of Evolutionary Algorithms that are

nature-inspired direct search and optimization methods. It employs mutation,

recombination, and selection on a group of individuals with candidate solutions

to develop better solutions iteratively. In contract to optimization, ES is great

for non-linear or non-convex continuous optimization issues. Compared to other

evolutionary algorithms, population sizes in ES are extremely small. The

effectiveness of an evolutionary strategy (ES) in addressing a certain problem

type is significantly influenced by its design of the ES-operators used, such as

mutation, recombination, and selection, as well as how the ES-operators are

altered during the evolution process.

28

2.4.6 Evolutionary Programming

Evolutionary programming [79] is one of the evolutionary algorithms that

allows the numerical parameters of the program to evolve while keeping the

program's structure constant. In contrast to conventional genetic algorithms,

evolutionary programming focuses on individual behaviors; therefore, the

crossover is not used in favor of mutation. The only way to produce individuals

is to mutate their parents, and the behavior is defined by the degree of the

mutation. Instead of using raw fitness value, relative fitness value is utilized to

quantify how much better a person performs than those around them. The most

frequent applications of evolutionary programming are in constrained settings

like scheduling and routing, power systems, and system design.

2.5 Evolving CNN Architecture using Evolutionary Algorithms

The evolution of CNN architecture begins with layered architecture increases

as per the improvement of computation power, datasets, and transformation of

technologies. The performance of CNNs depends on their topology selection,

selection of parameters, and training methods. In the early stages, the majority

of architectural designs were mostly developed through manual processes,

drawing inspiration from the problems posed by ImageNet. Nevertheless, the

NP-hard problem [26] poses a significant challenge in manually determining

the ideal parameters and their corresponding values in convolutional neural

networks (CNNs). The development of a suitable architecture requires a

substantial level of competence in the pertinent field, along with the application

of an iterative approach for parameter selection. In recent years evolutionary

algorithms have helped in designing efficient CNN architectures automatically.

As shown in Figure 2.9, the evolution of architecture is divided into four

categories. Experts designed the initial state-of-the-art architecture. However,

after using evolutionary algorithms, its performance improved. As

computation resources are affordable, deep learning-based models have become

29

popular in multiple image classification and segmentation domains, such as

medical, agriculture, defense, engineering, and many others.

Figure 2.8 GA, particle swarm optimization (PSO), genetic evolution (GE), genetic

programming (GP), evolution strategy (ES), differential evolution (DE), memetic

algorithm (MA), and others that do not suit these categories[4].

The CNN model comprises topology selection, hyperparameter selection,

variable initialization, and training. In topology selection, we need to identify

basic building blocks such as pooling, convolutional, and fully connected and

their interconnection. Hyperparameter selection consists of variables like

learning rate, dimension, number of filters, pooling operations, and optimizer

for the specific problem domain. In variable initialization, step initialization of

learning parameters like filter values and weights in fully connected layers. In

training filters, values are updated based on the feed-forward network with the

multiplication of the learning rate. The hyperparameter selection in CNN is a

complex task consisting of multiple feasible output solutions. Therefore,

evolutionary algorithms can resolve the problem of multiple local optima and

non-linear behavior of the parameters.

There are multiple evolutionary algorithm-based architectures are used for

designing and training an optimal CNN architecture as shown in Figure 2.8 [4].

Evolutionary algorithms are population-based algorithm that works by selecting

only a fit population for reproducing a new set of the population for the next

30

iteration. The components of evolutionary algorithms based on their biological

behavior must be designed by considering the problem domain.

Figure 2.9 Evolution of deep CNN architecture

The effectiveness of the algorithm depends on the representation of components

and their operators. For example, In GA, we have to redefine mutation and

crossover operators based on the encoding scheme and fitness function. GA can

be used for topology selection, training, and selecting hyperparameters,

including filters, filter size, and the number of layers. The fitness function can

be used to select the parameters which can be effectively applied to the CNN

architecture. Figure 2.10 shows the methodology for using evolutionary

31

algorithms in different steps of architecture selection. It starts with encoding

representation that identifies the number of variables used to represent CNN

architecture. That encoded architecture is passed along with the dataset to

evolutionary algorithms. The evolutionary algorithm used the initialization

method and passed decoded architecture with the dataset for training. After

training, it is passed to the fitness function defined for the decision of whether

the output is suitable for the next evolution process or discarded. After that,

multiple operators are defined based on encoding to find suitable architecture.

The process will continue till the maximum limit is reached. The selection of

fitness function and maximum limit mostly regulate the computation power.

Figure 2.10 Methodology to represent CNN parameters selection using evolutionary

algorithms and input data set

2.5.1 Encoding Scheme

To represent CNN architecture using evolutionary algorithms, we need an

encoding method to represent the CNN architecture and pass in the evolutionary

algorithm as input to test their effectiveness. Based on the literature, the

encoding schemes are either fixed length or variable length. In the fixed-length

encoding technique, the maximum depth of architecture is fixed. This technique

32

is easy to implement, but it does not generalize the exploration. In Figure 2.11

example of fixed length encoding is explained. In Figure 2.11(a), two different

chromosomes of 8 lengths represent CNN architecture where each chromosome

is the combination of 3 units of convolutional layers, two units of pooling layers,

and three units of fully connected layers present. In Figure 2.11(b) crossover

operator is explained and in Figure 2.11(c) final output of the newly generated

population is there. In dynamic encoding representation, we need to identify

basic building blocks of CNN architecture, such as a convolutional layer,

pooling layers, fully connected layers, and their interconnection. Each layer is

represented by a few variables based on the applied encoding technique.

Encoding of entire architecture is comprised of multiple small stages. Each

stage is a different combination of basic building blocks.

Figure 2.11 An example of CNN architecture representation using a fixed-length

encoding scheme. The length of the chromosome is 8 and the mutation and crossover

operator is defined to regenerate a new population of the same length [4].

In variable-length encoding representation depth of architecture is flexible. It is

a more stretched encoded representation of CNN architecture. In variable-length

33

representation, it is complex to define operators that make the population more

diverse as compared to fixed-length representation. Figure 2.12 shows the

different encoding representations. In Table 2.3, we compared different

encoding representation techniques along with the methodology to decode and

pass in evolutionary algorithms. Genetic NN used fixed-length binary encoding

representation. It explains the interconnection between different layers of layers

using 0 and 1 but is unable to justify the parameters within the layer. In CGP

encoding 1st part represent the type of block and remaining two fields represent

start and end node of architecture. In GACNN The architecture is represented

by a concatenated block of a convolutional layer and a fully connected layer.

The CNN-GA architecture is using variable length encoding, but due to huge

parameters it computation cost increases with the depth of architecture. Also in

AECNN three basic building blocks are used - DBU (Dense Block Unit), RU

(ResNet Block), and PU (Pooling Unit). Due to fixed architecture its

computation cost is less but in this representation modification of block is not

possible that restrict to explore CNN architecture effectivly. We compared the

number of chromosomes to represent the architecture with their complexity and

diversity. If we use less number of chromosomes to represent, then the

homological structure will be generated and stuck in local optima. If we use a

different encoding for each encoding, then the overall computation cost will be

very high. So based on the summary, it is observed that we need an encoding

that can generate diverse architecture with demised computation cost.

34

Figure 2.12 Block diagram of the encoding representation of CNN architecture in

literatures reviewed; (a) GACNN [5], (b) CGP-CNN [6], (c) CNN-GA [1], (d)

Genetic CNN [7]

Table 2.3 Methodology used to represent CNN architecture in existing encoding

techniques

Model Encoding

Representation

Methodology

Genetic

CNN, 2017

[7]

0-01-100

1. Existing architecture is divided into stages,

where each stage is connected using binary

encoding in increasing order.

2. The first '0' in the encoding representation

indicates that stage 1 and 2 have no connection.

The number '01' indicates that stage 3 is linked to

stage 2 but not to stage 1. '100' indicates that

stage 4 is directly connected to stage 1, but not to

stages 2 or 3.

35

CGP-

CNN, 2017

[6]

C3 1 2

1. Each node is divided into three blocks, with the

first representing the operation field and the rest

representing interconnection from the previous

block.

2. The operations are defined as convolution,

pooling, sum, and output.

3. Input layer defines the integer value of the

previously connected input nodes.

4. Concatenated layers represent the entire

architecture.

GACNN,

2019

[5]

C

1

C

2

L

1

L

2

1. The architecture is represented by a concatenated

block of a convolutional layer and a fully

connected layer.

2. In the given encoding- c1, c2 are convolution

layers with different filter sizes. A fully

connected layer is represented by L1 and L2.

3. Pooling layer is not defined as it is fixed after

each convolution block with max pool operation.

CNN-GA,

2020

[1]

32-64-0.2-64-256

1. CNN architecture is encoded into a string of

decimal and fractional values. Two continuous

decimal numbers represent the filter size of the

convolutional layer and the fractional value

represents the pooling layer.

2. If the fractional value is less than 0.5, then mean

pool otherwise max pool operation is used.

AE-CNN

[72]

1 Type=1

5,128,64,20

1. Three basic building blocks are used - DBU

(Dense Block Unit), RU (ResNet Block), and PU

(Pooling Unit).

2. Variable length encoding is used.

3. Length is dynamic, which extends with a random

selection of building blocks.

Sinha et al

[14]

4 8 8 2
1. Four parameters are used- image size, filter size,

number of filters, and architecture depth.

2. In this example, 9 bits are used to represent the

entire architecture, 2 bits for each of the four

possible image sizes, 3 bits for each of the eight

different filter sizes, 3 bits for the number of

filters, and 1 bit for each of the two possible

depths.

2.5.2 Designing and training of CNN architecture

The complexity of CNN architecture plays an important role in learning

complex features from training datasets. However, the difficulty of architecture

increases with the depth of the architecture as well their interconnection. In

addition to the depth, the number of parameters also increases. As a result,

determining a sufficient depth with proper interconnection for any dataset is

36

difficult, which is addressed by evolutionary algorithms. Genetic CNN [7] is

used to explore the CNN structure automatically. In this algorithm, a fixed-

length binary encoding scheme is used to represent CNN topology. The

convolution layer and pooling layer are used as a basic building block of CNN.

The Fully connected layer is not included in this representation. The entire

architecture is divided into S stages, and in each stage, Ks convolution blocks

are present in an ordered fashion, and only the lower number block is connected

with, the higher number block. In training, architectures are trained from

scratch, and the value of all hyperparameters is fixed throughout training. Then

architectures are compared among each other, and the optimum architecture is

identified. Now optimal architecture is compared with existing architectures

state of the art with benchmark data sets like MNIST, CIFAR-10, and

ILSVRC2012 [61]. This algorithm is not able to explore a lot of network

structures because of the fixed-length encoding scheme.

In AE-CNN [80], GA is automatically used to design CNN architecture. This

algorithm uses ResNet and DenseNet blocks as the basic building blocks. In the

ResNet block, three convolution layers are connected using skip connections.

In the dense block, four convolution blocks are present, where the individual

block is connected to the rest of the blocks directly. The max pool and avg pool

operations are chosen randomly in the pooling layer. Afterward, new crossover

and mutation operators are designed according to the encoding scheme. This

algorithm has shown significantly improved performance compared to the rest

of the manually and automatically designed architectures. The state-of-the-art

benchmark datasets such as CIFAR-10 and CIFAR-100 are used for comparing

the architectures resulting in reduced training time with similar algorithms.

Cartesian genetic programming (CGP-CNN) [6] was presented to create CNN

architecture automatically based on genetic programming [81]. This method

uses a direct encoding scheme to represent CNN blocks and their connectivity.

The benefit of this representation is that the depth of architecture is flexible and

easy to implement skip connection also. It uses fixed block size to reduce the

37

search space of architecture. In CGP encoding scheme, a direct acyclic graph is

used to represent nodes and their interconnection. The mutation operator is used

to replace unproductive nodes to evolve the architecture. This method uses

parallel processing to reduce training expenses. This algorithm is tested on

CIFAR-10 data set with a batch size of 128. It uses Softmax cross-entropy and

Adam optimizer for computation efficiency.

To optimize the CNN architecture, it took about 14 days by CGP-CNN

(ResNet). In the context of limited data, the author's approach is compared to

VGG and ResNet. It has been noticed that VGG and ResNet models were found

to be insufficient for handling tiny datasets, as they were primarily developed

to perform optimally with large-scale datasets. Simultaneously, the CGP-CNN

(ConvNet) and CGP-CNN (ResNet) models possess the capability to adjust

their architectural configurations in accordance with the amount of the dataset.

The optimization process for the design of CGP-CNN (ResNet) with limited

data required a duration of five days. The proposed method can automatically

make CNN architectures that are competitive and, in some cases, maybe better.

This method has some shortcomings; it requires higher computational cost and

time. Thus, the future work that can explore is to develop evolutionary

algorithms that can reduce the computational cost. Another future work can be

done to use this proposed method on different image datasets and tasks.

EvoCNN (Evolving Convolutional Neural Network) [82] is used to create an

efficient algorithm for evolving an efficient architecture and automatically

deciding the values of CNN weights. The authors specified many goals for

building this system, such as developing a gene encoding technique and a

weight initialization strategy. They also proposed a few operators to exceed loss

function convergence. They proposed a fitness function with a minimized

computing cost. They compare the proposed method and find that it outperforms

the existing methods. The gene encoding strategy requires the basic layers of

CNN to be encoded in one chromosome because the length of the gene was

unknown before the architecture development. It is very suitable for the

38

proposed method. As the performance of CNN is affected by the length of

genes, EvoCNN has a better chance of reaching the best possible solution. To

enhance comprehensibility, it is common practice to partition each chromosome

into two distinct sections. The initial section encompasses the convolution layer

and pooling layer, while the subsequent section encompasses the fully linked

layer.

According to the length required, the chromosome is made, and the layers are

attached. After making all possible combinations of layers, chromosomes are

developed, and each goes through fitness evaluation. Parent solutions are found

in the fitness evaluation test according to quantitative measures. This evaluation

of each individual has two parts. The first is to train the CNN and the second is

to calculate the fitness accuracy. During the preparation, first and foremost, each

CNN is decoded dependent on the data addressed. Also, the loads concerning

the convolutional layers and the completely associated layers depend on the

Gaussian distribution by using the comparing mean and standard deduction

encoded in the person.

Additionally, the CNN is prepared with the predetermined maximal ages with

the clump information in the preparation set. The standard binary tournament

selection is modified for this method. This method uses two sets of comparisons

to select parent solutions. The comparison between mean values and the

parameter numbers are the two comparison sets. If an individual is not selected

through this method, the parent with a smaller standard deviation is selected.

These comparisons are performed iteratively, and a set of selected parents is

made. The offspring are created using genetic algorithms. At first, two random

parent solutions are selected from the set; then, offspring are generated using

the crossover operator. After that, the mutation operator is used, offspring are

stored, and parents are deleted. This process continues till the parent set gets

empty. Toward the finish of development, various individuals could have good

mean values; however, various architectures and associations weight

introduction values. There will be various decisions in choosing the "Best

39

Individual" in such a manner. For instance, if we are just worried about the best

execution, we could disregard their design setups and think about just the

classification accuracy. Something else, if we accentuate the more modest

number of boundaries, relating choice could be made. When the "Best

Individual" is affirmed, the comparing CNN is decoded dependent on the

encoded design and association weight introduction data. Afterward, the

decoded CNN will be profoundly prepared with a bigger number of ages by

SGD for future use. Note that a ReLU non-linear layer is added to each

convolutional layer and a complete association layer while interpreting the

person to the comparing CNN.

This proposed method, EvoCNN, is compared with the best ten peer

competitors, and the result shows that it outperforms all of them. Two state-of-

the-art algorithms, GoogleNet and VGG16, have around 6.5% error rates, while

EvoCNN achieved 0.83% to 5.47. EvoCNN performed equally in the mean

performance to the two best algorithms, and EvoCNN has a smaller number of

connection weights training epochs. This method promises much better

performance because it evolves automatically in both the aspects of initial

connection weights and the architecture. In further experiments, it is found that

the EvoCNN method does not heavily rely on computing resources. It helps

researchers without extensive expertise to create simple yet effective CNN

models. EvoCNN was compared on nine benchmarks with 22 peer competitors.

The results show that it outperforms all of them in classification performance.

Using a smaller number of parameters, resulting in the least classification error

rate, and using limited computational capacity and battery power shows that it

can provide better choices to smart market devices willing to integrate CNN.

The algorithm CNN-GA [1] uses a variable-length encoding scheme to explore

the depth of CNN topology. To efficiently search the search space and describe

the encoding scheme, a modified crossover operator is also suggested. Skip

connection is incorporated to deal with the data complexity problem and reduce

the vanishing gradient. The author proposed an asynchronous parallel

40

computation method to reduce the computation cost, which effectively utilizes

computational resources. A novel catch component is introduced to reduce the

fitness evolution costs by removing the overlapping computation. Each building

block is designed in this encoding scheme using a skip layer and a pooling layer.

The skip layer is a technique in which two convolutional layers are

interconnected using a skip link. In the convolutional layer, the filter size of 3×3

and stride of 1×1 are set. In the pooling layer, the filter size is set to 2×2, and

max/avg pooling operations are used.

In this technique, the fully connected layer is not used to reduce the search space

for finding suitable architecture. Fitness values are calculated by training

individual architecture using a given dataset. In this algorithm, cache is

introduced to store the fitness value of evaluated individual architecture. This

approach reduces the redundant calculation of individuals if it is already stored

in the cache system. Based on the fitness value, vulnerable populations are

eliminated. It is used to generate a new set of the fit population from the existing

population using biological operators such as mutation and crossover. Mutation

and crossover operators must be defined according to input data and fitness

functions. This algorithm redesigned the crossover operator for unequal-length

input strings, which improves architecture search. In this algorithm, multiple

mutation operators are defined, such as adding or removing skip and pooling

layers or randomly changing the building block parameter.

The mutation operator is employed to determine the optimal depth of an

architecture. The efficacy of the CNN-GA algorithm is verified through

experimentation on the CIFAR-10 and CIFAR-100 datasets. The results of this

experiment indicate that the CNN-GA model exhibits superior performance in

terms of accuracy and optimality compared to both manually-made CNNs and

the hybrid automatic+manually constructed CNN. The CNN model developed

by CNN-GA has a reduced parameter count in comparison to alternative CNN

models. The CNN-GA approach requires fewer processing resources compared

41

to the majority of automatic and automatic+manually built convolutional neural

networks (CNNs).

Figure 2.13 Comparison of evolutionary CNN architecture under CIFAR-10 dataset

using genetic algorithm

We compared the recently developed evolutionary algorithms-based CNN

architecture as shown in Figure 2.13. The CIFAR-10 dataset was employed by

the author as a benchmark for evaluating the performance of a genetic algorithm

With regards to precision and the quantity of variables. In this comparative

analysis, it is observed that the CGP-CNN model has a lower parameter count,

whereas the CNN-GA model demonstrates superior accuracy levels despite

having similar parameter quantities.

In Table 2.4, we discuss the design of CNN architecture using evolutionary

algorithms and compare it with the benchmark data set. This table compares

most of the architecture designed based on genetic algorithms. A genetic

algorithm is suitable to optimize non-linear parameters such as depth and width

of architecture. The total parameters are proportional to depth, width, and

interconnection. The complexity of the model and the number of parameters

also depend on dataset complexity. So to implement CNN architecture using

evolutionary algorithms, different encoding techniques are discussed in this

table, performance is compared, and relevant gaps are identified. The

performance is compared based on accuracy, the number of parameters and

training cost, and processing power.

42

Table 2.4 Comparisons of recent evolutionary architectures based on CIFAR-10,

CIFAR-100, and MNIST datasets.
R

ef
er

en
ce

A
rc

h
it

ec
tu

re

D
a

ta
 s

et

A
cc

u
ra

cy
/

E
rr

o
r

G
P

U

G
P

U
 D

a
y

s

P
a

ra
m

et
er

s
(i

n

m
il

li
o

n
s)

#
ep

o
ch

s

R
el

e
v

a
n

t
re

v
ie

w

fi
n

d
in

g
s

 [7]
Genetic

CNN

MNIST 99.66

Titan

-X

 - - 50
1. Fixed-length

binary encoding

scheme is used.

2. Existing

architecture is

represented using

the different

connections of

convolutional

layers.

3. All convolutional

layers have the

same number of

filters.

4. Encoded

architecture is

initialized using

the Bernoulli

distribution.

CIFAR-10 77.06 17 - 50

ILSVRC

27.87

(error)

 - 50

[82]
 EVO

CNN

Fashion

benchmark

dataset

5.47

-

 - 6.68 100

1. Use of a smaller

dataset; the model

is not tested on a

large dataset.

2. Three basic

building blocks

like convolution

layer, pooling

layer, and fully

connected layers

are used.

3. Mean and standard

deviation of

weight values are

used for

initialization.

[1] CIFAR 100 20.85 36 5.4 -

43

CNN-

GA

CIFAR 10 96.78 Nvid

ia

Gefo

rce-

GTX

1080

Ti

35 2.9 -
1. Initialization is

done using normal

distribution.

2. Fixed length

encoding scheme

is used.

3. Semi-folded

architecture

reduces the

number of

comparisons in

chromosome

labels.

4. Pooling is not part

of the proposed

encoding

representation.

5. Not able to justify

skip connection in

this encoding.

CIFAR 100 79.47 40 4.1 -

[6]
CGP-

CNN
CIFAR 10 94.02

Nvid

ia

Gefo

rce-

GTX

1080 27 1.68 -

1. This

representation is

unsuitable for

representing

complex

architectures

because it only

uses two fields for

concatenation.

2. Exploration is

limited due to the

limited number of

pooling and

convolution

layers.

3. The number of

nodes ranges from

10 to 50.

 [80]
AE-

CNN
CIFAR 10 4.3

-

27 2 -

1. ResNet and

denseNet blocks

are considered

basic building

blocks, or a

combination of

these blocks is

considered a basic

block.

2. Genetic algorithm

is used to optimize

the architecture.

44

2.5.3 Hyperparameter optimization

Selection and initialization of hyper-parameters are critical in finding optimal

structures. The utilization of this method contributes to the mitigation of training

expenses and facilitates the attainment of the global optima at an accelerated

rate. The quantity of hyper-parameters in intricate structures is substantial,

therefore, it is difficult to initialize them manually. For instance, the AlexNet

model has 27 hyperparameters, VGG Net has 57 parameters, GoogleNet has 78

parameters, ResNet-52 has 150 parameters, and DenseNet has 376

hyperparameters. Therefore, it is almost impossible to identify the suitable

combination of parameters manually. The selection of optimum parameters is

an NP-hard problem, and researchers are examining a metaheuristic solution for

such problems. Many genetic algorithms, swarm intelligence, and evolutionary

algorithms are used to solve this problem.

Swarm intelligence is used to solve such nonlinear, multidimensional

hyperparameter selection problems. Talathi (2019) introduced a novel approach

known as sequential model-based optimization (SMBO) for the purpose of

selecting hyperparameters in deep convolutional neural networks (CNNs) [19].

In this methodology, the author has taken into account a limited number of

parameters across various layers. These parameters include the quantity of

convolutional layers, the quantity of filters within each layer, the size and stride

of the filters, the inclusion of normalization layers, the configuration of pooling

layers (including size, stride, and type of pooling, whether max or average), the

number of hidden layers, the number of nodes within each hidden layer, and the

specified dropout value. In this model p- ReLU (parametric rectified nonlinear

unit) activation function is used. The overall model is tested on the CIFAR-10

dataset, and a 6.9% mean error is obtained. Toshi et al. proposed a PSO-based

hyperparameter selection algorithm that improved classification accuracy [14].

In this analysis, the author chooses a few input parameters such as image size,

filter size, number of filters, and depth of the architecture. Each parameter has

a range of discrete values, out of which a suitable one is considered. This model

45

uses four possible image sizes, eight different filter sizes, and two different

architectures consisting of 11 and 13 layers. This model is trained using CIFAR-

10 and RSVD datasets. RSVD is the author's self-created dataset consisting of

653 images and seven classes of road, green grass, brown grass, soil, sky, leaf,

and tree stem. PSO is applied to identify the most suitable architecture providing

an accuracy of 88.3% in RSVD and 81.47 in the CIFAR-10 dataset.

Another PSO-based algorithm known as canonical PSO (cPSO-CNN) was

introduced for optimizing CNN parameters [83]. This used compound normal

distribution to improve the exploration capability of CNN. It uses a new

prediction model to reduce the cost of the fitness function. The cPSO-CNN

architecture was compared with existing architecture such as AlexNet with the

CIFAR-10 dataset, and performance was improved.

Table 2.5 Performance comparison of CNN hyperparameter optimization using

evolutionary algorithms

R
ef

er
en

ce

E
A

 M
et

h
o

d

C
N

N

H
y

p
er

p
a

ra
m

et
er

s

EA Parameters

A
cc

u
ra

cy
 /

E
rr

o
r

P
a

ra
m

et
er

s
(i

n

m
il

li
o

n
s)

P
o

p
u

la
ti

o
n

 s
iz

e

It
er

a
ti

o
n

F
it

n
es

s
fu

n
ct

io
n

D
a

ta
 S

et

[19] SMBO

1. Number of layers

2. Number of filters

per layer

3. Filter size

4. Stride

5. Types of pooling

6. Dropout value

7. Activation

function

NA NA CNN
CIFAR

-10
6.90 3.4M

[14] PSO
1. Image size

2. Filter size
4 10 CNN

CIFAR

-10
81.47 NA

46

3. Number of filters

4. Depth of

architecture

10 40 CNN RSVD 88.27 NA

[83]
cPSO-

CNN

1. Convolutional

layer

2. Pooling layer

3. FC layer

4. Filter size

5. Number of filters

6. Stride

7. Padding

NA 195

Fast

Fitne

ss

evalu

ation

CIFAR

-10
8.67 NA

[84] PSO

1. Number of filters

2. Size of filter

3. Activation

function

4. Fully connected

layer

5. Batch size

6. Optimizer

10 10 NA

CIFAR

-10
69.37 NA

MNIS

T
98.95 NA

[85] GA

1. Number of filters

2. Size of filters

3. Depth of

architecture

8 NA NA

Stop

Sign

Image

98.94 NA

Some parameters are decided during the design phase, such as depth of

architecture, layers and their interconnection, and learning rate. However, the

value of a few parameters is decided during the training phase, like the number

of filters, size of filters, batch size, learning rate, and stride & padding. In Table

2.5, we include the research paper that compares the architecture performance

based on parameter selection. So selection of optimum parameters and their

value is based on different algorithms like GA and PSO.

Evolutionary algorithms benefit architecture selection, parameter tuning, and

architecture training in deep neural networks such as ANN, CNN, and RNN

architecture designs. The model's performance is evaluated based on accuracy,

47

the number of training parameters, hardware requirements, scalability of data

set, convergence speed, and number of GPUs involved. The relationship

between the number of parameters required for constructing an architecture and

the accuracy is indefinite in the existing literature. Identifying which

architecture is better is indefensible as it involves many parameters. Parameter

selection and model training is difficult in all deep neural network models.

Architecture's performance is mostly evaluated based on accuracy and the

number of parameters. The number of parameters is directly proportional to the

training time of the architecture as well as the memory required for storage.

Figure 2.14 shows the comparison of evolved architecture that shows the

accuracy of an evolutionary-based model is equivalent to manual design

architecture with a huge margin in the number of parameters. That shows the

effectiveness of the evolutionary algorithm in deep architecture selection.

Although EA performs considerably well in solving the above problem but

involves a few challenges that need to be discussed, EA-based algorithms can

generate numerous CNN architectures. We train all architectures and compare

their performance while selecting the most suitable architecture. The training

cost of a deep CNN architecture requires a good amount of computational

power, which gets multiplied by the number of architecture designs. It is a

primary challenge to design an efficient evolution method that can optimize the

training cost of unique architecture. We require efficient operators that can

generalize and effectively utilize the search space. A novel method that can

reduce the number of parameters and optimize the training costs quickly is

required.

48

Figure 2.14 Comparisons of evolved architectures under CIFAR-10 dataset

The performance of EA is better than the random selection of parameters, but it

does not guarantee the optimal parameter selection. The convergence rate in EA

is faster in initial iterations and becomes slower when it is closer to the solution.

Initialization of parameters is an additional problem that may cause the outcome

to be stuck in local minima. We also use a suitable activation function to

increase nonlinearity. Determining a suitable encoding task for a CNN

architecture is challenging. The encoding representation of a CNN architecture

is a demanding task because it supports exploring several CNN architectures.

There are two major classifications of encoding methods, specifically fixed-

length encoding schemes and variable-length encoding schemes. The adoption

of a fixed-length encoding approach in the architecture guarantees a consistent

depth, hence enabling the smooth integration of the Convolutional Neural

Network (CNN) and its corresponding operator. The utilization of a variable-

length encoding strategy facilitates the exploration of numerous convolutional

neural network (CNN) architectures. However, its implementation is

challenging due to the significant computational expenses it incurs.

The CNN architecture designed and trained for one dataset may not be efficient

for another type of dataset. The performance of CNN architecture relies on the

size of the data set, image resolution, quality of images, and data distribution.

49

The existing CNN models, as discussed, are incompetent to adopt across

multiple domains as it requires a variety of datasets in large quantities for better

performance, especially in the medical domain where the dataset is scarce.

Additionally, it is required to have ample knowledge in the problem domain and

architecture design. The automatic designing of CNN architectures is required

to resolve the issue by constructing the architecture using EA algorithms.

However, it is unaffordable in a medium-scale educational institute and small-

scale originations due to the high computational cost involved in designing the

architectures.

Table 2.6 Comparison of manual and automatic architectures based on different

evolutionary algorithms

Ref

Model

name

(CNN)

Data Set
Accuracy

(%)

Paramete

rs

(in

millions)

Training

Cost
Approach

[44] Le-Net MNIST 95.00 0.60 - Manual

[45] AlexNet CIFAR-10 77.50 16.4 - Manual

[46] VGGNet CIFAR-10 93.34 15.1 - Manual

[47] ResNet-

110

CIFAR-10 93.57 1.7 - Manual

[48] GoogLe

Net

CIFAR-10 93.64 4 - Manual

[51] DenseNet CIFAR-10 96.54 25.6 - Manual

[85] NAS CIFAR-10 93.99 2.5 22,400

GPU

days

RNN

[86] NAS-Net CIFAR-10 96.27 2.6 2000

GPU

days

RNN

[28] Block-

QNN-S

CIFAR-10 95.62 6.1 90 GPU

days

RNN

[83] LDWPS

O

CIFAR-10 69.37 - 10 Epoch PSO

50

[80] cPSO-

CNN

CIFAR-10 81.47 - - PSO

[1] CNN-GA CIFAR-10 96.78 2.9 35 GPU

days

Genetic

Algorithm

[87] EvoU-

Net

PROMISE-

12

89.30 1.76 20 Epoch Genetic

Algorithm

[88] FAST-

CNN

CIFAR-10 94.70 - 14 GPU

days

Genetic

Algorithm

[89] Tabu_Ge

netic

Algorith

m

MNIST 99.38 - 22 Epoch Genetic

Algorithm

[6] CGP-

CNN

CIFAR-10 93.95 3.9 31 GPU

days

Genetic

Algorithm

[7] Genetic

CNN

CIFAR-10 92.90 - 20 GPU

days

Genetic

Algorithm

This article focuses on comparing architecture selection and hyperparameter

tuning, as shown in Table 2.6. However, architecture training is one area where

we need to check the application of EA algorithms because there may be a

chance of being stuck in local maxima in a derivative-based training

mechanism. This problem can be solved with the help of EA. Additionally, most

of the CNN architecture is trained for large datasets that are inadequate for

smaller datasets, such as medical domains like bone fracture classification and

segmentation [25], and some real-world problems like medicinal leave

classification [90], where we have limited datasets available. Other areas like

RNN, NAS [91], encoder, time series prediction, and signal processing can also

use EA-based algorithms to check the feasibility.

The neural network architecture is used in multiple domains to solve complex

problems and predictions. It uses to develop virtual assistants, chatbots,

healthcare domain, entertainment, fake news detection, image recognition,

image classifications, segmentation, robotics, and many more. It can also be

used to design RNN based model for time series data analysis. It can be used in

domains such as healthcare or agriculture, where researchers are not experts in

51

CNN designing. They can use an evolutionary algorithm to design

automatically from scratch without any intervention. It can also use in

hyperparameter tuning of deep neural networks.

2.6 Conclusion

The CNN has shown immense success in computer vision and image

classification tasks, which extract image content higher representations. This

article provides a comprehensive survey of the evolution of CNN architectures

using various evolution algorithms. We have compared EA-based architectures

with the existing CNN architectures created manually on different aspects such

as accuracy, depth, number of parameters, and computation cost. In this survey,

we have examined different EA algorithms like GA and PSO and their

applications to optimize the parameters of convolutional neural networks. We

have compared EA from four aspects: encoding technique, population

initialization, EA operators like mutation and crossover, and fitness function.

Table 2.6. summarizes the performance of various CNN designs in benchmark

data sets. We have analyzed different manually-designed state-of-the-art CNN

architectures in the image classification dataset and addressed the issues and

challenges in the existing techniques that can help in future research work. It is

challenging to manually select and initialize the parameters because of their

large size. The recent study areas, EA-based algorithms such as GA and PSO

have been employed to handle the problem with satisfactory results. However,

a few issues and challenges, including proper encoding technique, weight

initialization, and computation resources, still exist. Additionally, different EA-

based operators like mutation and crossover need to be redefined to cover

maximum search space efficiently. We must define a good fitness function that

can optimize the performance and reduce the number of comparisons.

52

CHAPTER -3

3 ENCODING REPRESENTATION OF CNN

ARCHITETCURE

3.1 Introduction

To design CNN architecture using an evolutionary algorithm first we need to

define encoding representation to represent CNN genotype and phenotype. The

literature analysis reveals that encoding schemes can be roughly categorized

into two types: This discussion pertains to two types of encoding methods:

fixed-length encoding schemes and variable-length encoding schemes. The

implementation of a fixed-length encoding method requires the first

determination of the architectural depth. One of the benefits of utilizing fixed-

length encoding representation is its ease of implementation on pre-existing

architecture, making it well-suited for defining mutation and crossover

operators. Genetic CNN [7], and Evo-CNN [82] are used fixed-length encoding

to define CNN architecture. In the variable-length encoding scheme depth of

architecture is not restricted which helps to explore the architecture more

generously. But it is quite a complex task to define the genetic operation to

mutate the architecture. Architecture such as CNN-GA [1], CGP-CNN [6], and

AE-CNN [80] is used variable-length encoding representation. The

effectiveness of encoding representation is evaluated based on computation

cost, accuracy, number of parameters, and adaptability. If encoding schemes are

represented with only a few parameters then It will restrict the exploration of

the architecture. If we represent individual training parameters as one unit then

the number of possible chromosomes is too huge which will increase

computation cost.

In Table 3.1, we compared the effectiveness of different existing encoding

schemes in terms of the number of parameters and training time in GPU days

with different datasets. After discussing relevant gaps in different encoding

53

schemes, a novel adaptive coding model is proposed. Figure 3.1 depicts a

comparison of different encoding schemes based on architecture using the

CIFAR-10 data set using genetic algorithms. The proposed scheme is adaptive

& versatile in nature. A simple representation offers a better understanding of

the complex network. Adaptive behavior scales up the application domain of

the proposed scheme.

Table 3.1 Comparative analysis of existing encoding techniques

M
o

d
el

D
a

ta
se

t

P
a

ra
m

et
er

s

G
P

U
 d

a
y

s

G
P

U

R
el

e
v

a
n

t

fi
n

d
in

g
s

Genetic

CNN,

2017 [7]

CIFAR-10 0.52M 17

Titan-X

1. Fixed-length binary encoding scheme is

used.

2. This encoding is used to represent an

existing model.

3. All convolutional layers use the same

number of filters and filter size.

ILSVRC

2012
- 20

CGP-

CNN,

2017 [6]

CIFAR-

100
0.83 M 14

Nvidia

Geforce-

GTX

1080

1. This representation is suitable to represent

basic architecture as only two fields are

used for concatenation.

2. The limited number of pooling and

convolution layer make it restricted to

explore.

3. Number of nodes is between 10 and 50.

CNN-

GA,

2020 [1]

CIFAR-10 2.9M 35 Nvidia

Geforce-

GTX

1080 Ti

1. Variable length encoding is used.

2. Fixed filter dimension 3X3 and stride

value 2 is used in the convolutional layer.

3. Fully connected layers are not part of the

representation.

CIFAR-

100
4.1M 40

3.2 Linear encoding scheme

In this algorithm, we pass input datasets, and after a sequence of evolution, the

framework automatically evolves to a suitable CNN architecture. A random

population is initialized using a predetermined encoding and population size

54

throughout evolution. Figure 3.2 depicts an example of the variable length

encoding system employed in the proposed study. This representation uses a

32×32 dimension colour image as the input to the convolutional layer. The

number of filters in a convolutional layer is randomly selected using population

initialization methods. The dimension of a filter is fixed to 3×3, and a stride of

1×1 is used to make it homogenous and reduce the computational cost.

In the pooling layer, the algorithm automatically selects avg pool or max pool

operation with equal probability having kernel size of 2×2 and stride 2×2. The

concatenated string of different layers represents the encoded representation of

CNN architecture, as shown in Figure 3.2. In pooling layer representation, it

shows with the pooling operation either min, max, or average pooling along

with kernel size 2×2 and stride 2×2. The concatenated string represents the

encoded representation of CNN architecture.

55

Figure 3.1 Comparison of various encoding schemes under training in CIFAR-10 dataset

using genetic algorithm; (a) Accuracy achieved, (b) Number of parameters used, (c) Error

rate and training cost

Figure 3.2 Decoded architecture of encoding representation “256-512-max-max-512-

256”

The hyperparameters are manually chosen using the existing state-of-the-art

model. The fitness of each individual, which represents a distinct convolutional

neural network (CNN) architecture, is evaluated during the process of evolution

56

using the given dataset. In the succeeding generation, parental individuals are

chosen according on their fitness, and new offspring are produced using genetic

operators such as crossover and mutation. The recently generated population is

merged with the preexisting population to form a novel roster of progeny. The

process of development continues until the counter surpasses the maximum

generation, with the counter being incremented by one. Most existing

frameworks are developed using fixed maximal generation, which could restrict

resource management. This paper employed adaptive exit conditions that

terminate automatically when the convergence rate is slow or near zero.

3.3 Hybrid encoding scheme

This section details the proposed encoding scheme to represent CNN topology.

The proposed scheme employs a variable-length encoding scheme that

represents the depth as well as the width of the architecture. The scheme

comprises four basic building blocks as shown in Figure 3.3. A few bit strings

represent each building block and concatenated structure will represent the

complete CNN architecture. In this method, we define some basic building

blocks as the genesis block, transit block, agile block, and fully connected block.

A few bit strings represent each building block and concatenated structure will

represent the complete CNN architecture. The genesis block is the combination

of one convolutional layer followed by one pooling layer, which is starting

block in the architecture. The complexity of an architecture is increased by

different combinations of agile and transit layers, and the fully connected layer

is used at the end.

The agile block is a concatenated convolutional block with a fixed number of

filters and the dimension of filters is also fixed. To represent the agile block

using an encoding scheme we used five concatenated parameters, the first one

represents operation, the second one represents the size of filters, the third one

represents the number of filters, the fourth parameter represents the depth and

the last one represents the interconnection of a different convolutional layer

57

using binary encoding. The size of filters and number of filters are randomly

initialized with pool of data created using literature study. The depth of

architecture also generated randomly in the range of [3-5]. Their

interconnection is represented by binary encoding proposed in genetic cnn.

In the transit blocks we define operational block followed by batch

normalization and then pooling operation in fractional part. Value of pooling

operation is define in range of [0-1]. If value is less then 0.5 means max pool

operation is used else mean pool opearation is used. Batch normalization is 1x1

convolution operation is used to scale down filters dimensional to concatenate

different size of input features. In fully connected layers first parts represent

operational value, after that k1 represents the number of results in flattern

operation and k2 represents number of output classes.

The main advantage of the proposed encoding scheme is that it can represent

architecture with a combination of two different layers. It makes the

representation simple and one can increase the depth of architecture easily.

Also, due to fewer parameters, one can define different evolutionary operations

like mutation and crossover efficiently. The scheme also supports increasing the

complexity within the block. In the agile block, it can generate filer size and

depth randomly and thereby increases complexity. The proposed scheme

supports a hybrid encoding scheme that utilizes binary as well as decimal

representation. The encoding scheme offers the maximum choice of exploration

in depth and width as well as faster optimization. We pass our initialized

encoding method in evolutionary algorithms to optimize for better architecture.

The maximum number of iterations is fixed at 50 as limited computation power

is available.

58

Figure 3.3 Hybrid encoding (a) Block diagram of the proposed encoding

representation (b) CNN architecture of corresponding proposed encoding scheme [92]

The performance of architecture depends on topology design as well as

hyperparameter selection [93]. In this paper, we fixed the value of learning

parameters based on the previous literature such as we chose filter dimensions

1x1, 3x3, and 5x5, and a number of filters 64, 128, and 256 in a convolutional

layer and agile layer [94]. We propose depth in range 3 to 7 in the agile layer to

maintain simplicity. For the weight initialization of a fully connected layer, we

suggest using transfer learning in the CIFAR-10 benchmark dataset for

evaluation of performance as the limited computational power is available else

CIFAR-100 or any complex dataset can be used. In the fitness function, we

propose to use only 10% of the dataset to select the next population which

makes it faster, and after the selection of the top architecture, we trained for the

complete dataset. Input image size is proposed as 32x32, with 128 batch size

and the learning rate is chosen as 0.1 for homogeneous data size.

A novel encoding scheme for representing CNN architecture is proposed which

can effectively be used to represent a complex architecture with a variable

59

number of parameters. The study also presents a decisive comparison among

various existing encoding schemes that can help the researchers in choosing the

best suitable method for their application-specific projects. The comparative

analysis highlights the merits and demerits of existing schemes through multiple

parameters like accuracy and computational power. The authors also

represented a depth analysis based on the number of parameters used to

represent input chromosomes, their initialization methods, operators used to

find different combinations, and fitness function to stop the searching methods.

3.4 Conclusion

The study proposed a novel encoding method that is used to represent complex

CNN architecture. In this encoding, we can represent existing architecture as

well as generate new architecture using an available dataset. It covers both the

depth and width of architecture that reduces the number of parameters and helps

to identify comparable architecture in significant improvement of computation

power with comparable accuracy. This encoding scheme is used to pass

evolutionary algorithms to design new architecture automatically using

different datasets. We can use evolutionary algorithms for hyperparameter

tuning and use this encoding representation in the future.

60

CHAPTER -4

4 AN EVOLUTIONARY FRAMEWORK FOR DESIGNING

ADAPTIVE CONVOLUTIONAL NEURAL NETWORK

4.1 Introduction

This part provides a description of the structure of the proposed algorithm in

subsection 4.2, followed by an analysis of its crucial points population

initialization in subsections 4.2.1, fitness function in subsection 4.2.2, and

offspring generation in subsection 4.2.3. In order to facilitate comprehension of

the algorithm under consideration, we shall provide a comprehensive account

of the details associated with each notable stage, with an evaluation of specific

architectural-level designs.

4.2 Algorithm overview

The proposed algorithm's framework is shown in Algorithm 1, and the flow

chart of the proposed framework is depicted in Figure 4.1.

Figure 4.1 Flow chart of evolutionary algorithms

61

In this algorithm, we pass input datasets, and after a sequence of evolution, the

framework automatically evolves to a suitable CNN architecture. A random

population is initialized using a predetermined encoding and population size

throughout evolution. Figure 3.2 depicts an example of the variable length

encoding system employed in the proposed study.

 Algorithm 1 Framework of the proposed algorithm using EA

Input: A dataset of a set of CNN architectures represented by the

variable length encoding technique.

Output: Identifies the best CNN architecture.

1. Propose an encoding scheme to represent CNN architecture.

2. Initialize the population of N CNN architectures with the help of

the proposed encoding method. Initialize max iteration G, the

number of epochs for the fitness function, and the input dataset.

3. Initialize the hyperparameter kernel size, loss function, learning

rate, and stride size.

4. While (G>0)

4.1 Calculate the fitness of each architecture.

4.2 Select N/2 best architectures for reproduction using GA

operators.

4.3 Apply crossover and mutation operators to generate new

offspring.

4.4 Concatenate the new population with the existing best

population to create a new pool of N architectures.

5. G G-1

6. End

7. Return the best CNN architecture.

62

4.2.1 Population Initialization

The main components of a Convolutional Neural Network (CNN) consist of

convolutional layers, pooling layers, and occasionally fully connected layers.

The performance of the CNN is significantly influenced by its parameters,

which are depending upon the depth and width of the network's connections.

The fully connected layer is omitted in this encoding due to its computational

inefficiency caused by the large number of parameters.

Algorithm 2 Population Initialization

Input: The number of initial population N.

Output: The list of N initialized architecture using encoding representation.

1. P  Ø

2. While |P| < N

3. Choose random integer D as depth.

4. Generate a convolutional layer with the number of filters between [25 −

29] and filter size is 3×3.

5. While (D>0)

5.1. Choose a random number between (0-1)

5.2. If number < 0.5

5.2.1. Generate a convolutional layer with the number of filters are

between [25 − 29] and a filter size is 3×3.

5.3. Else

5.3.1. Choose between max pool and avg pool randomly.

5.3.2. Concatenate the selected layer with the existing architecture

Pi.

5.4. D--;

6. P=P U Pi

7. End

8. Return P.

63

Initially, the number of population and the depth of each population is selected

randomly. In the selected population, the first layer is fixed as a convolutional

layer; then, convolutional and pooling layers are determined randomly with

equal probability. The convolutional layer's filter count is randomly chosen in

the range of [25 − 29] . All the selected population is organized in a list to

evaluate the fitness value after initialization. The filter size and pooling

operation range are selected manually based on a few standard architectures.

The algorithm for population initialization is mentioned in Algorithm 2.

4.2.2 Fitness function

Algorithm 3 evaluates the fitness of all input populations using a given dataset.

An individual's CNN is initially decoded using a predetermined set of

hyperparameter parameters. CNN decoding is trained with training data, and

accuracy is used to determine fitness. Because the training of CNN is a time-

taking task, we used half of the dataset for initial training to make it efficient.

After training the population, half of the population is eliminated based on

fitness score. The best population is chosen for reproduction in the following

offspring generation. If the model is showing good training accuracy, but

validation accuracy is not increasing in respective of training in a few successive

epochs, then architecture may suffer from overfitting [95]. We can eliminate

the overfitted model to reduce the computation cost in the early stages.

64

Algorithm 3 Fitness function

Input: The selected population list of CNN architecture, input dataset, range

of hyperparameters, optimizer, loss function, epoch, train data, and test data.

Output: Best CNN architecture with fitness value

1. Divide the dataset into train and test data.

2. Fbest  0

3. For each population Pi in population pool P do:

4. Decode the architecture and calculate fitness accuracy using half of

the population using backpropagation methods.

5. Eliminate the architecture based on overfitting.

6. Choose P best population, train using the complete dataset, and

calculate fitness value F for each.

6.1 If F> Fbest

6.2 Fbest = F

6.3 End

7. End

4.2.3 Offspring generation

Algorithm 4, consisting of two parts, illustrates the specifics of producing the

offspring. Crossover is the first, and mutation is the second. Specifically, two

parents are selected based on which of two randomly selected individuals is

more suitable. We build a new set of populations with equal probability by

utilising mutation and crossover processes. In a crossover operation, each parent

is arbitrarily divided into two pieces, and the two pieces from each parent are

exchanged to generate two offspring. We have chosen crossover probability 0.8

and mutation probability 0.2. Mutation operation helps define the architecture's

exact depth, whereas the crossover operation increases the convergence

rate. Both operations must be compatible with the encoding scheme. Newly

generated offspring will be combined with the previous best architecture to

create a new population pool.

65

Algorithm 4 Offspring generation

Input: Input population list P, with its fitness value, mutation, and crossover

operation with their probability value.

Output: Newly generated population list Q.

1. Q  Ø

2. While | 𝑄𝑡|<|𝑃 | do

2.1. p1,p2  randomly select two population values from P

2.2. r  randomly generate number in range [0, 1].

2.3. If (r < 0.5)

2.3.1. Select mutation operations [add conv layer, add skip layer, add

pool layer, remove layer of filters], change the value, and

position (index value in offspring) randomly.

2.4. Else

2.4.1. Choose the crossover point in p1 and p2.

2.4.2. Apply crossover operation

2.5. End

3. Return 𝑄𝑡

4. End

4.3 Conclusion

After a sequence of evolution, the framework automatically evolves to a

suitable CNN architecture. During evolution, a random population is initialized

using a predefined encoding and population size. The hyperparameters are

manually chosen using the existing state-of-the-art model. Each individual's

fitness, which encodes a specific CNN architecture, is assessed throughout

evolution using the provided dataset. In following generations, parental

individuals are chosen based on their fitness, and the creation of more offspring

is assisted through the implementation of genetic operators, such as crossover

and mutation. The recently generated populace combines with the preexisting

population to form a novel inventory of descendants. The process of evolution

66

continues until the counter surpasses the predetermined maximum generation,

at which juncture the counter is incremented by one. we employed adaptive exit

conditions that terminate automatically when the convergence rate is very slow

or close to zero.

67

CHAPTER -5

5 EXPERIMENTAL RESULTS

5.1 Introduction

This section provides a concise overview of the differences between the

proposed methodology and the outcomes seen by other researchers in the field.

A comparison analysis was performed to evaluate our findings in relation to the

current state-of-the-art approaches. The evaluation criteria included

classification accuracy, computational resources utilized (measured in terms of

GPU days), and architectural considerations. The term "GPU day" refers to the

duration of algorithm execution on a single GPU, serving as a metric for

quantifying the computational resources utilized by these methods. The

outcomes of a comparison between the suggested algorithm and its peer rivals

are presented in Table 5.1. The initial column presents a compilation of

architectural classifications. The second column has the nomenclature of the

architectural structures. The encoding methods are represented in the third

column, while the fourth column denotes the evolutionary algorithm employed.

The datasets employed are specified in the fifth column, while the classification

accuracy is documented in the sixth column. The number of generations is

specified in the seventh column, followed by the training epochs in the eighth

column. Finally, the parameter count for the pertinent convolutional neural

network (CNN) is displayed in the ninth column. Furthermore, the tenth column

displays the number of GPU days utilized. All competitors' results in the table

are extracted from the related publications; ''–'' denotes that the results have not

been published.

68

Table 5.1 The classification accuracy comparison on the CIFAR-10 datasets between

the proposed algorithm and its contemporary contemporaries [102].
R

ef
er

en
ce

A
rc

h
it

ec
t

u
re

E
n

co
d

in
g

E
A

D
a

ta
se

t

 A
cc

u
ra

cy

G
en

E
p

o
ch

P
a

ra

m
et

er
s

G
P

U

 M
a

n
u

a
l

A
ss

is
ta

n
ce

[96

]

Eden

Fixed

Lengt

h

PSO CIFAR10 74.5

%

1

0

13 1.8

M

12

hour

Partiall

y

Requir

ed
MNIST 98.4

%

[6] C-

PSO-

CNN

(AlexN

et)

Fixed

Lengt

h

PSO CIFAR10 89.99

%

4

0

10 - - Partiall

y

Requir

ed

[6] C-

PSO-

CNN

(VGG

Net-

16)

Fixed

Lengt

h

PSO CIFAR10 91.02

%

4

0

10 - - Partiall

y

Requir

ed

[84

]

LDPS

O

Fixed

Lengt

h

PSO CIFAR10 69.37

%

- 10 - 2.37

hour

Partiall

y

Requir

ed

[7] Geneti

c CNN

Fixed

Lengt

h

GA CIFAR10 77.06

%

5

0

- - 17

days

Partiall

y

Requir

ed

[97

]

EAS - RL CIFAR10 95.77

%

- 30

0

23.4

M

10

days

Partiall

y

Requir

ed

[84

]

CGP-

CNN

variab

le

Lengt

h

GP CIFAR10 94.02

%

5

0

50

0

1.68

M

27

days

Not

Requir

ed

[86

]

NAS - LST

M

CIFAR10 93.99

%

- 50 2.5

M

22,4

00

days

Not

Requir

ed

[85

]

E-

CNN-

MP

Variab

le

Lengt

h

GA MNIST 98.94

%

5 - - - Not

Requir

ed

[1] CNN-

GA

Variab

le

Lengt

h

GA CIFAR10 77.50

%

5 35

0

- - Not

Requir

ed 95.22 2

0

2.9

M

30

days

[10

0]

DCNN

Variab

le

Lengt

h

GA CIFAR10 89.32 1

0

10

0

- 12

days

Not

Requir

ed MNIST 99.64 1

0

10

0

3

days

69

Fashion_MN

IST

94.60 1

0

10

0

5

days

 Propos

ed

Metho

ds

Varia

ble

Lengt

h

GA CIFAR10 79.41

%

5 40 1.2

M

2.47

hou

r

Not

Requi

red

87.02

%

1

0

40 1.6

M

6.38

hou

r

MNIST 99.39

%

1

0

10 2.7

M

3.12

hou

r

Fashion_M

NIST

93.07

%

1

0

10 1.4

M

3.27

hou

r

Figure 5.1 Comparison between different evolutionary CNN algorithms using

CIFAR-10 datasets.

5.2 Discussion

Table 5.1 displays the results of a comparison between the proposed algorithm

and its peer competitors. In this table the peer competitors into two categories.

In the first group, we compared architectures requiring manual aid in design

selection or parameter adjustment. In this category, the computation cost is less

because half of the work is performed by professionals. In the second group, we

compared architectures that evolved without human involvement. Our

70

methodology exhibits a significant improvement in classification accuracy on

the CIFAR10 dataset within the primary category of peer competitors.

Specifically, the Eden architecture exhibits a 16.8% improvement, while the

LDPSO design showcases a more substantial increase of 25.4%. In the second

category, our technique improves classification accuracy on the CIFAR10

dataset by 2.46% for CNN-GA architecture and 12.8% for Genetic-CNN

architecture as shown in Figure 5.1 for 5 generation and in Figure 5.4 for 10

generation respectively. It also exhibits a 1.06% and 0.45% improvement on

the MNIST dataset over the Eden and E-CNN-MP architectures, respectively.

We further tested the efficacy of our approach using the Fashion_MNIST

dataset, which demonstrates a 3.37% improvement over the capsuleNet [99]

architecture. The classification accuracy is slightly less for EAS, CGP-CNN,

NAS, CNN-GA, and DCNN architecture. However, in addition to classification,

we also compare the effectiveness based on the number of parameters, epoch,

and computation required in GPU. DCNN requires 100 epochs and 12 GPU

days to train CIFAR-10 datasets, CNN-GA requires 30 GPU days and up to 350

epochs, CGP-CNN is trained in 500 epochs and requires 27 GPU days, EAS

requires 10 GPU days with 300 epochs, and NAS requires 50 epoch and 22,400

GPU days. Our algorithm was trained in 10 generations, 10 epochs, and 6.38

hours using the Nvidia A100 GPU configuration on the CIFAR 10 dataset,

demonstrating significant improvement and a faster convergence rate. Our

techniques provide competitive performance in terms of precision and the

number of parameters while requiring less calculation time.

To assess the efficacy of the proposed methodology in revealing the structure

of the convolutional neural network (CNN), we have presented the evolution of

outcomes in Tables 5.2 and Table 5.3, corresponding to the MNIST and

Fashion_MNIST datasets, respectively. Figure 5.2 illustrates the evolutionary

history of the proposed approach in its pursuit of identifying the optimal

convolutional neural network (CNN) architecture for the MNIST dataset. The

figure presents two key metrics: (a) average accuracy and (b) top accuracy.

Additionally, Figure 5.3 illustrates the evolutionary trajectory of the proposed

71

method in its pursuit of identifying the optimal architecture of a Convolutional

Neural Network (CNN) on the CIFAR10 dataset. The effectiveness of the

proposed algorithm is demonstrated by comparing the convergence of various

benchmark evolutionary trajectories, as depicted in Figure 5.5. We randomly

chose the N population and initialized the value using the recommended

encoding approach. In this experiment, the population size is N=5, the number

of epochs is 40, and the number of generations is 10. The architectures are

trained using the backpropagation technique for forty epochs. In the training

and validation sets, we utilized an 80/20 ratio. After training, the validation

accuracy applied in the fitness function for decision-making of the proposed

method is calculated. We eliminated weaker populations for the next generation

using mode accuracy. The fitness function eliminates 50 % of the population in

each generation, and the best 50 % are employed as parents. The selected

population is repopulated using the genetic operator's mutation and crossover

with probabilities of 0.2 for mutation and 0.80 for crossover. The existing fittest

population is merged with the new population. Thus, using this method, the

same number of chromosomes is available in each generation. The effectiveness

of the suggested algorithm has been assessed through the utilization of statistical

measures such as the minimum, mean, maximum, mode, and standard

deviation, and standard error of the mean (SEM). The standard error of the mean

(SEM) measures how much discrepancy is likely in a sample's mean compared

with the population mean. For each iteration, we have selected the most

improved CNN architecture, which is represented in the final column of Table

5.2 and Table 5.3. The maximum accuracy indicates the best accuracy obtained

by any CNN architecture at that generation. The standard deviation

demonstrates the genetic algorithm's efficacy in terms of a quicker convergence

rate. Initial standard deviation values are largely due to the random initialization

of the population. However, its value decreases over successive generations,

and the top accuracy rises, bringing the outcome close to the global optimum.

If the standard deviation continues to decline, the subsequent few generations

will see greater convergence. With this strategy, we reached a standard near the

72

benchmark accuracy in 10 epochs and 10 generations, demonstrating a faster

convergence rate with equivalent precision and less computational power. This

technique yielded 99.39% top accuracy on the MNIST datasets and 93.07% on

the Fashion_MNIST dataset, equivalent to the benchmark accuracy without user

intervention and requiring less GPU days. The evolutionary progression of the

algorithm under consideration in uncovering the optimal convolutional neural

network (CNN) structure on both the Fashion MNIST dataset and MNIST

dataset is depicted in Figure 5.6 and Figure 5.8 correspondingly. Figure 5.7

illustrates the comparison of various state-of-the-art architectures for the

MNIST dataset.

Table 5.2 Evolution of CNN model using MNIST dataset with population size=5,

epoch 40, and generation=10

Generation Min% Avg % Max% Med% Std-D SME Best CNN model

Gen 1 87.15 95.84 99.15 97.46 4.39 1.96 256-512-max-max-

512-256

Gen 2 97.46 98.34 99.15 98.01 0.68 0.30 256-512-max-max-

512-256

Gen 3 97.49 98.69 99.15 99.15 0.66 0.29 256-512-max-max-

512-256

Gen 4 98.57 99.01 99.23 99.15 0.24 0.10 256-512-max-512-

256-max-512-256

Gen 5 98.62 99.04 99.23 99.15 0.21 0.09 256-512-max-512-

256-max-512-256

Gen 6 99.15 99.21 99.33 99.23 0.06 0.04 256-512-max-max-

256-512-max-512-

256-max-512-256

73

Gen 7 99.23 99.27 99.33 99.23 0.05 0.02 256-512-max-max-

256-512-max-512-

256-max-512-256

Gen 8 99.04 99.26 99.36 99.33 0.11 0.05 256-512-max-max-

512-256-max-512-

256

Gen 9 99.10 99.29 99.36 99.36 0.04 0.10 256-512-max-max-

512-256-max-512-

256

Gen 10 99.29 99.34 99.39 99.36 0.02 0.01 256-512-512-256-

max-512-256-max-

512-256

Table 5.3 Evolution of CNN model using Fashion_MNIST dataset with population

size=5, epoch 10, and generation=10

Generation Min

%

Avg % Max% Med% Std-

D

SME Best CNN model

Gen 1
88.20 89.25 91.01 88.69 0.99 0.44 128-256-512-256-

mean-mean

Gen 2
88.69 89.44 91.01 89.12 0.86 0.38 128-256-512-256-

mean-mean

Gen 3
89.12 89.77 91.01 89.64 0.67 0.29 128-256-512-256-

mean-mean

Gen 4
89.59 90.70 91.43 91.01 0.70 0.31 128-256-512-256-

mean-mean-mean

Gen 5
91.01 91.35 91.60 91.40 0.19 0.08 128-256-512-256-512-

256-mean-mean

Gen 6
91.01 91.35 91.60 91.40 0.19 0.08 128-256-512-256-512-

256-mean-mean

Gen 7
91.40 91.86 93.07 91.60 0.24 0.11 128-256-128-256-

mean-mean-mean

Gen 8
91.41 91.94 93.07 91.79 0.58 0.26 128-256-128-256-

mean-mean-mean

74

Gen 9
91.60 91.98 93.07 91.79 0.55 0.24 128-256-128-256-

mean-mean-mean

Gen 10
91.64 92.11 93.07 91.82 0.51 0.23 128-256-128-256-

mean-mean-mean

Figure 5.2 The proposed algorithm's evolutionary trajectory in discovering the best

CNN architecture on the MNIST dataset; (a) Avg accuracy (b) Top accuracy.

75

Figure 5.3 The trajectory of the proposed algorithm as it discovers the optimal CNN

architecture on the CIFAR10 dataset.

Figure 5.4 Comparison between different evolutionary CNN algorithms using

CIFAR-10 datasets

76

Figure 5.5 Comparing the evolutionary trajectory of the proposed algorithm with

CNN-GA and Genetic CNN to determine the optimal CNN architecture for the

CIFAR10 dataset.

Figure 5.6 The evolutionary trajectory of the proposed algorithm in discovering the

best architecture of CNN on the Fashion MNIST dataset

77

Figure 5.7 Comparison between different evolutionary CNN algorithms using

MNIST datasets

Figure 5.8 The trajectory of the proposed algorithm as it discovers the optimal CNN

architecture on the MNIST dataset.

The proposed algorithm demonstrated an increase in convergence rate using the

defined techniques. We have displayed the evolution in Table 5.2 and Table 5.3

to help understand the efficacy of the suggested approach for discovering CNN

designs. We used the MNIST and Fashion_MNIST datasets with a population

size of 5, where each architecture is trained for 40 and 10 epochs, respectively.

The evolution of each generation is expressed using standard deviation and top

accuracy. It shows the effectiveness of the proposed algorithm with its faster

78

convergence rate in the initial iteration reaching toward global optima without

being stuck in the local one. Additionally, it offers the diversity of the algorithm

that works suitably in different datasets.

5.3 Conclusion

This study aims to develop a genetic algorithm (GA)-based method for

automatically designing convolutional neural network (CNN) architectures.

This method seeks to select the most suitable CNN architecture for image

classification tasks, specifically targeting users who have limited expertise in

changing CNN structures. The objective was achieved by the presentation of a

new encoding method for the genetic algorithm (GA) that allows for the

encoding of various depths for convolutional neural networks (CNNs). The

proposed technique is assessed and contrasted with 11 contemporary peer

competitors, comprising of four partial tuning and seven automatic algorithms

that determine the architectures of CNNs. The experimental results obtained

from the MNIST, Fashion_MNIST, and CIFAR10 datasets provide evidence

that the suggested methodology possesses the potential to autonomously

generate deep convolutional neural network (DCNN) structures that are

equivalent to, and in some cases, even surpass state-of-the-art models.

79

CHAPTER -6

6 CONCLUSION AND FUTURE SCOPE

The utilization of a genetic algorithm for the automatic selection of

convolutional neural network (CNN) architecture has demonstrated efficacy in

optimizing the performance of such networks. The genetic algorithm (GA) is a

search technique that draws inspiration from natural selection and genetics. It is

employed to iteratively refine a population of potential solutions, aiming to

converge towards an ideal answer. To use a genetic algorithm for automatic

CNN architecture selection define the objective of the CNN architecture

selection, such as maximizing classification accuracy on a specific dataset. In

the context of CNN architecture, a chromosome represents a candidate

architecture. We need to define a suitable chromosome representation, which

can be a binary string or a list of integers representing different architectural

choices (e.g., number of layers, filter sizes, pooling operations). Generate an

initial population of random candidate architectures (chromosomes). The size

of the population is contingent upon the intricacy of the search space and the

availability of computer resources. Assess the level of suitability of each

potential architecture within the population in terms of fitness. Train and

evaluate each architecture on a validation set using a predefined fitness function

(e.g., classification accuracy). The fitness function measures how well each

architecture performs on the given objective. The process of selecting

individuals from the population is conducted based on their fitness scores.

Greater levels of physical fitness are indicative of superior performance.

Various selection methods commonly employed in evolutionary algorithms

include tournament selection, roulette wheel selection, and rank-based

selection. The application of genetic operators, such as crossover and mutation,

is employed to generate novel candidate designs derived from the chosen

people. The process of crossover involves the amalgamation of genetic material

from two parent architectures in order to generate offspring, whereas mutation

brings minor and random alterations to the design. The process involves doing

80

the evaluation, selection, and genetic operators repeatedly for a predetermined

number of generations or until a termination requirement is satisfied. This

termination criterion could be achieving a desirable fitness level or depleting

computational resources. Upon the algorithm reaching the termination criterion,

the optimal Convolutional Neural Network (CNN) architecture is determined

by selecting the architecture that exhibits the highest performance from the final

population.

6.1 Summary of the Thesis

In this thesis, we presented a methodology to design an effective CNN model

using evolutionary algorithms. This framework generates a CNN architecture

automatically using the datasets given. We validated our proposed methods

using three benchmark datasets MNIST, Fashion_MNIST, and CFAR-10.

These datasets were utilized for training and evolving our deep learning models.

We compared our methods with the existing state-of-the-art architectures using

parameters accuracy, computation cost, and the number of parameters obtained.

The main research objectives mentioned in Chapter 1, section 1.3 have been

addressed in this thesis in the following order:

First, we propose two novel encoding representations: Each encoding

representation outlines the process of population initialization. The length of the

individual, which signifies the depth of the related Convolutional Neural

Network (CNN), is initialized in a random manner. The initial step involves the

creation of a linked list of L nodes, with each node being appropriately

specified. If a number generated at random is found to be less than 0.5, the

corresponding node is designated as a skip layer. Alternatively, it can be

interpreted as a pooling layer, with the specific pooling type being selected by

an additional random variable. In skip connection layers, the feature map

numbers for the nodes are assigned in a random manner. An illustrative

demonstration of the suggested encoding approach for a Convolutional Neural

Network (CNN) is presented, showcasing the depiction of skip layers and

81

pooling layers through designated codes. The whole convolutional neural

network (CNN) architecture is represented by a sequential concatenation of

codes corresponding to the individual layers. For instance, a CNN with a depth

of 8 can be denoted as "32-64-0.2-64-256-0.8-512-256".

The second scheme employs a variable-length encoding approach that

represents both the depth and width of the architecture. It consists of four

building blocks: the genesis block, transit block, agile block, and fully

connected blocks. The genesis block handles the input image size, while the

transit block reduces feature maps and dimensions using 1x1 convolution and

pooling operations. The value of the pooling operation determines whether max

pooling or mean pooling is used. The agile block incorporates dense

connections and skip connections to reduce parameters and increase

complexity. The components encompassed under this framework consist of

operational procedures, the dimensions of the filter, the quantity of filters

employed, the level of depth, and the interconnections established between

convolutional layers. Ultimately, the fully linked blocks serve to flatten the

layer and subsequently transform it into the output layer, which is characterized

by the number of classes. The proposed encoding scheme offers several

advantages. It enables the representation of architectures with a combination of

two different layers, simplifying the representation and facilitating the increase

in architecture depth. The scheme supports evolutionary operations like

mutation and crossover efficiently due to its fewer parameters. It also allows for

increasing complexity within the blocks, randomly generating filter sizes and

depths in the agile block. The scheme incorporates a hybrid encoding scheme,

utilizing binary and decimal representations. It provides flexibility for exploring

depth and width, leading to faster optimization.

Third, we demonstrate a novel framework to evolve the CNN architecture

automatically using GA. In this algorithm, we pass input datasets, and after a

sequence of evolution, the framework automatically evolves to a suitable CNN

architecture. A random population is initialized using a predetermined encoding

82

and population size throughout evolution. The basic components of a CNN are

convolutional layers, pooling layers, and sometimes fully linked layers. The

CNN's performance heavily depends on its parameters, which depend on the

connection depth and width. The fully connected layer is discarded in this

encoding as many parameters make it computationally inefficient. Initially, the

number of population and the depth of each population is selected randomly. In

the selected population, the first layer is fixed as a convolutional layer; then,

convolutional and pooling layers are determined randomly with equal

probability. It evaluates the fitness of all input populations using a given dataset.

An individual's CNN is initially decoded using a predetermined set of

hyperparameter parameters. CNN decoding is trained with training data, and

accuracy is used to determine fitness. Because the training of CNN is a time-

taking task, we used half of the dataset for initial training to make it efficient.

After training the population, half of the population is eliminated based on

fitness score. The best population is chosen for reproduction in the following

offspring generation. Specifically, two parents are selected based on which of

two randomly selected individuals is more suitable. We build a new set of

populations with equal probability by utilising mutation and crossover

processes. In a crossover operation, each parent is arbitrarily divided into two

pieces, and the two pieces from each parent are exchanged to generate two

offspring. After a sequence of evolution, the framework automatically evolves

to a suitable CNN architecture. During evolution, a random population is

initialized using a predefined encoding and population size. The

hyperparameters are manually chosen using the existing state-of-the-art model.

Each individual's fitness, which encodes a specific CNN architecture, is

assessed throughout evolution using the provided dataset.

In subsequent generations, parental individuals are selected based on their

fitness, and the production of additional offspring is facilitated through the

implementation of genetic operators, including crossover and mutation. The

recently generated population is merged with the preexisting population to form

a novel roster of progeny. The process of evolution continues until the counter

83

surpasses the maximum generation threshold, at which juncture the counter is

incremented by one. The primary aim of this research is to devise a

methodology for the automated generation of Convolutional Neural Networks

(CNNs) through the utilization of Genetic Algorithms (GA). This technique

seeks to determine the most effective CNN architecture for image classification

tasks, specifically targeting users who have limited expertise in changing CNN

structures. The objective was achieved by the proposal of a novel encoding

strategy for the genetic algorithm (GA) to encode arbitrary depths of

convolutional neural networks (CNNs). The proposed methodology is assessed

and contrasted with 11 contemporary peer rivals, comprising of four partial

tuning and seven automatic techniques used for establishing the architectures of

CNNs. The empirical findings obtained from conducting experiments on the

MNIST, Fashion_MNIST, and CIFAR10 datasets demonstrate that the

proposed methodology has the capability to autonomously create deep

convolutional neural network (DCNN) architectures that are on par with, or

perhaps beyond, the most advanced models currently available.

6.2 Future Work

The proposed framework for automatic CNN architecture evolution using

genetic algorithm for image classification provides better classification

accuracy than the baseline model due to the effectiveness of encoding

representation and proposed genetic operators in obtaining better accuracy in

benchmark datasets MNIST, CIFAR10, and Fashion_MNIST. However, the

research presented here have wider scope with several extensions addressing

variety of challenges that require future attention, as is the case with many other

academic articles in the same field. In the part that follows, we go through some

of these issues and suggest upcoming directions that, in our opinion, will have

a significant influence.

The proposed work focus on linear variable length encoding scheme that make

its application easier to adopt and implement using different genetic operators.

84

But it cannot handle the skip connection in deeper architecture. Therefore, In

deep neural networks, as the gradient flows backward during the training

process, it can get progressively smaller, leading to the vanishing gradient

problem. When gradients become too small, the network struggles to update the

weights of earlier layers effectively, making training difficult. Skip connections

facilitate the integration of features originating from various depths within the

network. This enables the network to integrate low-level and high-level

elements, hence enabling the acquisition of intricate patterns and capturing both

detailed and overarching information. Additionally in existing encoding we

considered only convolutional layer and pooling layer but fully connected layer

is skiped. In future work fully connected layer also be part of improved

architecture that improve the accuracy,

The proposed work performance is mostly on lightweight CNN architectures,

that often perform well on small datasets due to their simplicity and efficiency.

These architectures are designed to have fewer parameters and lower

computational requirements, making them suitable for small datasets and

resource-constrained environments. However, when applied to large datasets,

they might not be as effective. Lightweight CNN architectures usually have a

smaller number of layers and parameters compared to larger, more complex

architectures. While this simplicity allows them to be trained on small datasets,

it also limits their capacity to capture and represent complex patterns in large

datasets. Large datasets often contain diverse and intricate patterns that require

more complex models to be effectively learned. To perform well on large

datasets, CNN architectures with higher capacity, more layers, and more

parameters are often preferred. Such architectures have the potential to learn

more complex representations, capture intricate patterns, and generalize better

to the diversity present in large datasets.

Further research could investigate the technique’s efficacy in various

evolutionary algorithms that can accelerate the CNN fitness measurement. The

proposed work is based on GA. It is known for its ability to explore a broader

85

search space, making it more effective at global optimization, especially for

complex and multimodal problems. Whereas other algorithms such as PSO

[103-104], and DE [105] on the other hand, tends to be more exploitative,

meaning it is better at fine-tuning solutions once a good region of the search

space is found. Additionally, variations of both PSO and GA, and hybrid

approaches combining elements of both algorithms have been proposed to

leverage their strengths while mitigating their weaknesses.

86

7 REFERENCES

[1] Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Lv, J. (2020). Automatically

designing CNN architectures using the genetic algorithm for image

classification. IEEE transactions on cybernetics, 50(9), 3840-3854.

[2] Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of

features from tiny images.

[3] Deng, L. (2012). The mnist database of handwritten digit images for

machine learning research [best of the web]. IEEE signal processing magazine,

29(6), 141-142.

[4] Galván, E., & Mooney, P. (2021). Neuroevolution in deep neural

networks: Current trends and future challenges. IEEE Transactions on Artificial

Intelligence, 2(6), 476-493.

[5] Esfahanian, P., & Akhavan, M. (2019). Gacnn: Training deep

convolutional neural networks with genetic algorithm. arXiv preprint

arXiv:1909.13354.

[6] Suganuma, M., Kobayashi, M., Shirakawa, S., & Nagao, T. (2020).

Evolution of deep convolutional neural networks using cartesian genetic

programming. Evolutionary computation, 28(1), 141-163.

[7] Xie, L., & Yuille, A. (2017). Genetic cnn. In Proceedings of the IEEE

international conference on computer vision (pp. 1379-1388).

[8] Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms towards

AI. Large-scale kernel machines, 34(5), 1-41.

[9] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE

international conference on computer vision (pp. 1440-1448).

[10] Barik, D., & Mondal, M. (2010, June). Object identification for

computer vision using image segmentation. In 2010 2nd International

conference on education technology and computer (Vol. 2, pp. V2-170). IEEE.

87

[11] Muthukrishnan, R., & Radha, M. (2011). Edge detection techniques for

image segmentation. International Journal of Computer Science & Information

Technology, 3(6), 259.

[12] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding

convolutional networks. In Computer Vision–ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13

(pp. 818-833). Springer International Publishing.

[13] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den

Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep

neural networks and tree search. nature, 529(7587), 484-489.

[14] Sinha, T., Haidar, A., & Verma, B. (2018, July). Particle swarm

optimization based approach for finding optimal values of convolutional neural

network parameters. In 2018 IEEE congress on evolutionary computation

(CEC) (pp. 1-6). IEEE.

[15] Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., & Pastor, J. R.

(2017, July). Particle swarm optimization for hyper-parameter selection in deep

neural networks. In Proceedings of the genetic and evolutionary computation

conference (pp. 481-488).

[16] Yamasaki, T., Honma, T., & Aizawa, K. (2017, April). Efficient

optimization of convolutional neural networks using particle swarm

optimization. In 2017 IEEE third international conference on multimedia big

data (BigMM) (pp. 70-73). IEEE.

[17] Soon, F. C., Khaw, H. Y., Chuah, J. H., & Kanesan, J. (2018). Hyper‐

parameters optimisation of deep CNN architecture for vehicle logo recognition.

IET Intelligent Transport Systems, 12(8), 939-946.

[18] Wang, B., Sun, Y., Xue, B., & Zhang, M. (2018, July). Evolving deep

convolutional neural networks by variable-length particle swarm optimization

88

for image classification. In 2018 IEEE Congress on Evolutionary Computation

(CEC) (pp. 1-8). IEEE.

[19] Talathi, S. S. (2015, September). Hyper-parameter optimization of deep

convolutional networks for object recognition. In 2015 IEEE international

conference on image processing (ICIP) (pp. 3982-3986). IEEE.

[20] Fan, E. (2000). Extended tanh-function method and its applications to

nonlinear equations. Physics Letters A, 277(4-5), 212-218.

[21] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10) (pp. 807-814).

[22] Han, J., & Moraga, C. (1995, June). The influence of the sigmoid

function parameters on the speed of backpropagation learning. In International

workshop on artificial neural networks (pp. 195-201). Berlin, Heidelberg:

Springer Berlin Heidelberg.

[23] Zunino, R., & Gastaldo, P. (2002, May). Analog implementation of the

softmax function. In 2002 IEEE international symposium on circuits and

systems. Proceedings (Cat. No. 02CH37353) (Vol. 2, pp. II-II). IEEE.

[24] Xiao, S., Li, T., & Wang, J. (2020). Optimization methods of video

images processing for mobile object recognition. Multimedia Tools and

Applications, 79, 17245-17255.

[25] Joshi, D., & Singh, T. P. (2020). A survey of fracture detection

techniques in bone X-ray images. Artificial Intelligence Review, 53(6), 4475-

4517.

[26] Bacanin, N., Bezdan, T., Tuba, E., Strumberger, I., & Tuba, M. (2020).

Optimizing convolutional neural network hyperparameters by enhanced swarm

intelligence metaheuristics. Algorithms, 13(3), 67.)

89

[27] Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., & Hutter, F.

(2016, December). Towards automatically-tuned neural networks. In Workshop

on automatic machine learning (pp. 58-65). PMLR.

[28] Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning

transferable architectures for scalable image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 8697-8710).

[29] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K.

(2017). Hierarchical representations for efficient architecture search. arXiv

preprint arXiv:1711.00436.

[30] Ren, J., Li, Z., Yang, J., Xu, N., Yang, T., & Foran, D. J. (2019). Eigen:

Ecologically-inspired genetic approach for neural network structure searching

from scratch. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition (pp. 9059-9068).

[31] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., ... &

Kurakin, A. (2017, July). Large-scale evolution of image classifiers. In

International conference on machine learning (pp. 2902-2911). PMLR.

[32] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks

through augmenting topologies. Evolutionary computation, 10(2), 99-127.

[33] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., ... &

Murphy, K. (2018). Progressive neural architecture search. In Proceedings of

the European conference on computer vision (ECCV) (pp. 19-34).

[34] Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Tan, K. C. (2021).

A survey on evolutionary neural architecture search. IEEE transactions on

neural networks and learning systems.

[35] Mirjalili, S., & Mirjalili, S. (2019). Genetic algorithm. Evolutionary

Algorithms and Neural Networks: Theory and Applications, 43-55.

90

[36] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm

optimization. In Proceedings of ICNN'95-international conference on neural

networks (Vol. 4, pp. 1942-1948). IEEE.

[37] Shirani Faradonbeh, R., Monjezi, M., & Jahed Armaghani, D. (2016).

Genetic programing and non-linear multiple regression techniques to predict

backbreak in blasting operation. Engineering with computers, 32, 123-133.

[38] Wang, B., Sun, Y., Xue, B., & Zhang, M. (2018). A hybrid differential

evolution approach to designing deep convolutional neural networks for image

classification. In AI 2018: Advances in Artificial Intelligence: 31st Australasian

Joint Conference, Wellington, New Zealand, December 11-14, 2018,

Proceedings 31 (pp. 237-250). Springer International Publishing.

[39] Elsken, T., Metzen, J. H., & Hutter, F. (2017). Simple and efficient

architecture search for convolutional neural networks. arXiv preprint

arXiv:1711.04528.

[40] Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055.

[41] Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018, July). Efficient

neural architecture search via parameters sharing. In International conference

on machine learning (pp. 4095-4104). PMLR.

[42] Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of

the recent architectures of deep convolutional neural networks. Artificial

intelligence review, 53, 5455-5516.

[43] Fukushima, K. (1988). Neocognitron: A hierarchical neural network

capable of visual pattern recognition. Neural networks, 1(2), 119-130.

[44] LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker,

H., ... & Vapnik, V. (1995). Learning algorithms for classification: A

comparison on handwritten digit recognition. Neural networks: the statistical

mechanics perspective, 261(276), 2.

91

[45] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet

classification with deep convolutional neural networks. Advances in neural

information processing systems, 25.

[46] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[47] Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual learning for image

steganalysis. Multimedia tools and applications, 77, 10437-10453.

[48] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ...

& Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of

the IEEE conference on computer vision and pattern recognition (pp. 1-9).

[49] Chollet, F. (2017). Xception: Deep learning with depthwise separable

convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1251-1258).

[50] Hochreiter, S. (1998). The vanishing gradient problem during learning

recurrent neural nets and problem solutions. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107-116.

[51] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017).

Densely connected convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 4700-4708).

[52] Wu, H., & Gu, X. (2015). Towards dropout training for convolutional

neural networks. Neural Networks, 71, 1-10.

[53] Keskar, N. S., & Socher, R. (2017). Improving generalization

performance by switching from adam to sgd. arXiv preprint arXiv:1712.07628.

[54] Bock, S., Goppold, J., & Weiß, M. (2018). An improvement of the

convergence proof of the ADAM-Optimizer. arXiv preprint arXiv:1804.10587.

[55] Lydia, A., & Francis, S. (2019). Adagrad—an optimizer for stochastic

gradient descent. Int. J. Inf. Comput. Sci, 6(5), 566-568.

92

[56] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701.

[57] Kurbiel, T., & Khaleghian, S. (2017). Training of deep neural networks

based on distance measures using RMSProp. arXiv preprint arXiv:1708.01911.

[58] Zhang, Z., & Sabuncu, M. (2018). Generalized cross entropy loss for

training deep neural networks with noisy labels. Advances in neural information

processing systems, 31.

[59] Ma Cao, J., Su, Z., Yu, L., Chang, D., Li, X., & Ma, Z. (2018,

November). Softmax cross entropy loss with unbiased decision boundary for

image classification. In 2018 Chinese automation congress (CAC) (pp. 2028-

2032). IEEE.

[60] Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of

empirical predictor.

[61] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009,

June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition (pp. 248-255). Ieee.

[62] Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747.

[63] Chunna, L., Hai, F., & Chunlin, G. (2020). Development of an efficient

global optimization method based on adaptive infilling for structure

optimization. Structural and Multidisciplinary Optimization, 62, 3383-3412.

[64] Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S.,

Tanchoco, J. M., & Brunese, P. A. (2019). Multiple traveling salesman problem

with drones: Mathematical model and heuristic approach. Computers &

Industrial Engineering, 129, 14-30.

93

[65] Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint

arXiv:1312.4400.

[66] Lucas, S. (2021). The origins of the halting problem. Journal of Logical

and Algebraic Methods in Programming, 121, 100687.

[67] Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for

continuous engineering optimization: harmony search theory and practice.

Computer methods in applied mechanics and engineering, 194(36-38), 3902-

3933.

[68] Voß, S., Martello, S., Osman, I. H., & Roucairol, C. (Eds.). (2012).

Meta-heuristics: Advances and trends in local search paradigms for

optimization.

[69] Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies–a

comprehensive introduction. Natural computing, 1, 3-52.

[70] Hansen, N., Arnold, D. V., & Auger, A. (2015). Evolution strategies.

Springer handbook of computational intelligence, 871-898.

[71] Koza, J. R. G. P. (1992). On the programming of computers by means

of natural selection. Genetic programming.

[72] Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for

constrained parameter optimization problems. Evolutionary computation, 4(1),

1-32.

[73] Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms.

Springer Science & Business Media.

[74] Dorigo, M., Birattari, M., Di Caro, G. A., Doursat, R., Engelbrecht, A.

P., Floreano, D., ... & Sayama, H. (Eds.). (2010). Swarm Intelligence: 7th

International Conference, ANTS 2010, Brussels, Belgium, September 8-10,

2010 Proceedings (Vol. 6234). Springer.

94

[75] Hu, X., Eberhart, R. C., & Shi, Y. (2003, April). Swarm intelligence for

permutation optimization: a case study of n-queens problem. In Proceedings of

the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706) (pp.

243-246). IEEE.).

[76] Karaboga, D. (2005). An idea based on honey bee swarm for numerical

optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university,

engineering faculty, computer engineering department.

[77] Houck, C. R., Joines, J., & Kay, M. G. (1995). A genetic algorithm for

function optimization: a Matlab implementation. Ncsu-ie tr, 95(09), 1-10.

[78] Le,Qin, A. K., Huang, V. L., & Suganthan, P. N. (2008). Differential

evolution algorithm with strategy adaptation for global numerical optimization.

IEEE transactions on Evolutionary Computation, 13(2), 398-417.

[79] Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made

faster. IEEE Transactions on Evolutionary computation, 3(2), 82-102.

[80] Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2019). Completely

automated CNN architecture design based on blocks. IEEE transactions on

neural networks and learning systems, 31(4), 1242-1254.

[81] Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies–a

comprehensive introduction. Natural computing, 1, 3-52.

[82] Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2019). Evolving deep

convolutional neural networks for image classification. IEEE Transactions on

Evolutionary Computation, 24(2), 394-407.

[83] Wang, Y., Zhang, H., & Zhang, G. (2019). cPSO-CNN: An efficient

PSO-based algorithm for fine-tuning hyper-parameters of convolutional neural

networks. Swarm and Evolutionary Computation, 49, 114-123.

95

[84] Serizawa, T., & Fujita, H. (2020). Optimization of convolutional neural

network using the linearly decreasing weight particle swarm optimization. arXiv

preprint arXiv:2001.05670.

[85] Loussaief, S., & Abdelkrim, A. (2018). Convolutional neural network

hyper-parameters optimization based on genetic algorithms. International

Journal of Advanced Computer Science and Applications, 9(10).

[86] Zoph, B., & Le, Q. V. (2016). Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578.

[87] Zhong, Z., & Yan, J. (2018). Liu, Cheng-Lin. Practical network blocks

design with q-learning. In AAAI Conference on Artificial Intelligence.

[88] Ari Hassanzadeh, T., Essam, D., & Sarker, R. (2020, March). EvoU-

Net: An evolutionary deep fully convolutional neural network for medical

image segmentation. In Proceedings of the 35th annual ACM symposium on

applied computing (pp. 181-189).

[89] Bakhshi, A., Noman, N., Chen, Z., Zamani, M., & Chalup, S. (2019,

June). Fast automatic optimisation of CNN architectures for image

classification using genetic algorithm. In 2019 IEEE congress on evolutionary

computation (CEC) (pp. 1283-1290). IEEE.

[90] Joshi, D., Mishra, V., Srivastav, H., & Goel, D. (2021). Progressive

transfer learning approach for identifying the leaf type by optimizing network

parameters. Neural Processing Letters, 53(5), 3653-3676.

[91] Liu, S., Zhang, H., & Jin, Y. (2022). A survey on surrogate-assisted

efficient neural architecture search. arXiv preprint arXiv:2206.01520.

 [92] Mishra, V., & Kane, L. (2023, March). Self-build Deep Convolutional

Neural Network Architecture Using Evolutionary Algorithms. In Proceedings

of Fourth International Conference on Computer and Communication

Technologies: IC3T 2022 (pp. 463-471). Singapore: Springer Nature Singapore.

96

[93] Joshi, D., Singh, T. P., & Sharma, G. (2022). Automatic surface crack

detection using segmentation-based deep-learning approach. Engineering

Fracture Mechanics, 268, 108467.

[94] Mishra, V., & Kane, L. (2023). A survey of designing convolutional

neural network using evolutionary algorithms. Artificial Intelligence Review,

56(6), 5095-5132.

[95] Gavrilov, A. D., Jordache, A., Vasdani, M., & Deng, J. (2018).

Preventing model overfitting and underfitting in convolutional neural networks.

International Journal of Software Science and Computational Intelligence

(IJSSCI), 10(4), 19-28.

[96] Dufourq, E., & Bassett, B. A. (2017, November). Eden: Evolutionary

deep networks for efficient machine learning. In 2017 Pattern Recognition

Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)

(pp. 110-115). IEEE.

[97] Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018, April). Efficient

architecture search by network transformation. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 32, No. 1).

[98] Ma, B., Li, X., Xia, Y., & Zhang, Y. (2020). Autonomous deep learning:

A genetic DCNN designer for image classification. Neurocomputing, 379, 152-

161.

[99] Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between

capsules. Advances in neural information processing systems, 30.

[100] Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv

preprint arXiv:1605.07146.

[101] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 7132-7141).

97

[102] Mishra, V., & Kane, L. (2023). An evolutionary framework for

designing adaptive convolutional neural network. Expert Systems with

Applications, 224, 120032.

[103] Huang, J., Xue, B., Sun, Y., Zhang, M., & Yen, G. G. (2022). Particle

swarm optimization for compact neural architecture search for image

classification. IEEE Transactions on Evolutionary Computation.

[104] Lawrence, T., Zhang, L., Lim, C. P., & Phillips, E. J. (2021). Particle

swarm optimization for automatically evolving convolutional neural networks

for image classification. IEEE access, 9, 14369-14386.

[105] Rajesh, C., & Kumar, S. (2022). An evolutionary block based network for

medical image denoising using Differential Evolution. Applied Soft

Computing, 121, 108776.

98

LIST OF PUBLICATIONS

1. Vidyanand Mishra, and Lalit Kane. "An evolutionary framework for

designing adaptive convolutional neural network." Expert Systems with

Applications 224 (2023): 120032.

2. Vidyanand Mishra, and Lalit Kane. "A survey of designing convolutional

neural network using evolutionary algorithms." Artificial Intelligence

Review 56.6 (2023): 5095-5132.

3. Vidyanand Mishra, and Lalit Kane. "Self-build Deep Convolutional Neural

Network Architecture Using Evolutionary Algorithms." Proceedings of

Fourth International Conference on Computer and Communication

Technologies: IC3T 2022. Singapore: Springer Nature Singapore, 2023.

99

