Name:

Enrolment No:

UPES End Semester Examination, Dec 2024

Course: Database Systems Program: M.Tech.(CSE) Course Code: CSEG7029 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Do as directed.

SECTION A (5Qx4M=20Marks)				
Q. 1	Describe three schema architecture of DBMS.	4 M	CO1	
Q. 2	Describe linear hashing with suitable example	4 M	CO3	
Q. 3	Explain, what makes MongoDB a popular choice among NoSQL databases, and what kind of data model does it use?	4 M	CO4	
Q. 4	Differentiate between centralized and distributed database management system.	4 M	CO4	
Q. 5	Explain the term ETL with a suitable example.	4 M	CO5	
SECTION B				
(4Qx10M= 40 Marks)				
Q. 6	Illustrate the use of 2 nd NF and 3 rd NF in database with a suitable example.	10M	CO2	
	Illustrate the primary types of NoSQL databases, and how does each one differ in terms of data storage?	10 M	CO3	
Q. 7	(OR)			
	i. Compare a collection and a document in MongoDB with suitable example.	5 M	CO3	
	ii. Compare a single-node and a multi-node MongoDB deployment.	5 M	000	
Q. 8	Explain the different types of distributed database systems. Explain data fragmentation, replication and allocation techniques for distributed design.	10 M	CO4	
Q. 9	Illustrate slice and dice functions of OLAP with suitable example.	10 M	CO5	
SECTION-C				
(2Qx20M=40 Marks)				
Q. 10	Describe the following in brief with suitable example.i.Referential integrity constraintii.Compare B Tree and B+ Tree	5M* 2=10M	C01	

	 Explain different relational algebra operators and write a relational algebra query for displaying a particular rows and particular columns of a relation. 	10 M	
Q. 11	 i. During its execution, a transaction passes through several states, until it finally commits or aborts. List all possible sequences of states through which a transaction may pass. Explain why each state transition may occur. ii. Consider the following two transactions: <i>T</i>31: read(<i>A</i>); read(<i>B</i>); if <i>A</i> = 0then <i>B</i> := <i>B</i> + 1; write (<i>B</i>). <i>T</i>32: read(<i>B</i>); read(<i>A</i>); if <i>B</i> = 0then <i>A</i> := <i>A</i> + 1; write (<i>A</i>). Add lock and unlock instructions to transactions <i>T</i>31 and <i>T</i>32, so that they observe the two-phase locking protocol. Can the execution of these transactions result in a deadlock? 	10 M 10 M	CO2
	(OR)		
	 i. With the help of a neat diagram show different transaction states and explain. ii. Illustrate lost update problem with help of an example. iii. Compare recoverable and non-recoverable schedules with suitable example 	5 M 5 M 10 M	CO2