Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Differential Calculus

Program: B.Sc. (Hons.) Mathematics by Research

Course Code: MATH1070

Semester: I Time: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions.

SECTION A
(5Ox4M=20Marks)

	(SQX4M=20Marks)		
S. No.		Marks	СО
Q 1	Find the n^{th} derivative of $\cos^4 x$.	4	CO1
Q 2	Show that $\lim_{x\to 2} 4x - 5 = 3$ using $\epsilon - \delta$ definition.	4	CO1
Q 3	Find the length of polar sub-tangent and polar sub-normal for the curve $\frac{2a}{r} = 1 - \cos \theta$.	4	CO2
Q 4	For the curve $r^2 = b^2 \sec 2\theta$, prove that (i) $\psi = \frac{\pi}{2} - \theta$ (ii) $pr = b^2$ Where ψ be the angle which tangent makes with the x-axis.	4	CO2
Q 5	Find the equation of the tangent plane and normal line of a surface $f(x, y, z) = x^2 + y^2 + z^2 - 9 = 0$ at point (1,2,4).	4	CO3
	SECTION B		
	(4Qx10M=40 Marks)		
Q 6	Trace the curve $y^2(a-x) = x^2(a+x)$.	10	CO2
Q 7	Show that the function $f(x,y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \sin \frac{1}{y}, & x \neq 0, y \neq 0 \\ 0, & x = 0, y = 0 \end{cases}$ is differentiable at $(0,0)$.	10	CO3
Q 8	Find the radius of curvature of the curve $x^2y = a(x^2 + y^2)$ at point $(-2a, 2a)$.	10	CO2
Q 9	If $y = \cos(m\sin^{-1}x)$ then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$	10	CO1
	OR		

	State Lagi	range's Mean Value Theorem and hence prove that						
	$\frac{\cos a\theta - \cos a\theta}{\cos a\theta}$	$\frac{b\theta}{d} \le (b-a) \text{ if } \theta \ne 0.$						
	θ							
SECTION-C								
	(2Qx20M=40 Marks)							
Q 10	(i)	If $x + y + z = u, y + z = uv, z = uvw$ then show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v.$						
	(ii)	Find the maximum value of $u = x^p y^q z^r$ when the variable x, y, z are subject to condition $ax + by + cz = p + q + r$.	10+10	CO4				
Q 11	(i)	If $v = (1 - 2xy + y^2)^{-\frac{1}{2}}$ then find the value of $\frac{\partial}{\partial x} \left[(1 - x^2) \frac{\partial v}{\partial x} \right] + \frac{\partial}{\partial y} \left(y^2 \frac{\partial v}{\partial y} \right)$						
	(ii)	Sketch the level curves of the function $f(x,y) = \sqrt{9 - x^2 - y^2}$ for the values $k = 0,1,2,3$.						
	(i) (ii)	Prove that $f(x,y) = \begin{cases} \frac{x^3y^3}{x^2+y^2}, & x \neq 0, y \neq 0 \\ 0, & x = 0, y = 0 \end{cases}$ is continuous at origin. Find the directional derivative of $\phi = xy^2 + yz^2$ at the point $(2, -1, 1)$ in the direction of the vector $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$.	10+10	CO3				
