Name: Enrolm	ent No:						
UPES End Semester Examination, December 2024 Programme Name : B.Sc. Physics (Hons. and Research) Course Name : Elements of Modern Physics							
Course Code : PHYS 2026 Max. Max			arks: 100				
Nos. of page(s) : 2							
Instrue	Instructions:						
1)	Scientific calculators are allowed during exan	18.					
2)	Values of constants are given at the end of the	e question paper.					
SECTION A							
S. No.	An questions	are compulsory	Maalaa	<u> </u>			
01			Marks	CO			
QI	Elaborate the relevance of phase and group velocity in the context of quantum mechanics.		4	CO1			
Q2	Which among a proton and deuteron will have longer wavelength if they are having equal kinetic energy?		4	CO2			
Q3	Explain the nuclear fission and fusion processes.		4	CO1			
Q4	Calculate the ratio of densities between a Chlorine $\binom{35}{17}Cl$ and a Helium $\binom{4}{2}He$ nucleus. Given: 1 a.m.u=1.66×10 ⁻²⁷ Kg/u.		4	CO3			
Q5	Can we determine the exact diameter of a very thin wire (around $\approx 100 \mu m$ thick) using white light? Elaborate your opinion.		4	CO3			
SECTION B							
Q6, Q7 and Q8 are compulsory. There is an internal choice in Q9.							
Q6	Discuss the context of Heisenberg uncertainty principle in quantum mechanics. Discuss how the verification of Heisenberg uncertainty principle can be carried out using a Gamma ray microscopy.		10	CO2			
Q7	Assume a particle is define by the wavefund	ction $\varphi(x,t) = \sqrt{\frac{8}{L}} e^{ikx}$ in the	10	CO3			
00	region $0 \le x \le 2L$. Find the expectation va	lue of position and momentum.					
۷ð	Define the range of the α -particle. Explain Gamow's theory of alpha decay with the necessary diagram.		10	CO2			
Q9	Describe the construction of a pulsed laser working with the help of an energy level dia OR	with a neat diagram and explain its agram.					
	 (a) Discuss absorption and emission process (b) Considering a two-level system in ther wavelength 6200 Å, estimate the ratio of 	in case of LASER system. mal equilibrium having transition population in these levels at 600K (4+6)	10	CO1			

SECTION-C					
Q10 is compulsory. There is an internal choice in Q11.					
 Q10 (a) Establish a relation between the half-life time and mean lifetime after properly defining them. (b) The half-life period of Radium is 168 years. After how many years will one gram of the pure element i. be reduced to 10 milligram ii. loose one centigram (b) What is nuclear binding energy? The binding energy of the neon isotope ²⁰/₁₀Ne is 160.647 MeV. Find its atomic mass. The mass for proton and neutron is given by 1.007825 and 1.008665 a.m.u respectively and 1 a.m.u =931.49 MeV. (4+6) 	20	CO3			
Q11 (a) Elaborate wave-particle duality. Illustrate how the existence of matter waves was verified experimentally. (3+7) (b) A photon of energy <i>E</i> is scattered by an electron initially at rest (rest mass energy, E_0) (Compton scattering problem). Show that the maximum kinetic energy (KE_{max}) of the recoil electron can be calculated as $KE_{max} = \frac{2E^2/E_0}{(1+2E/E_0)}$ (10) (a) Evaluate the normalized wavefunction of 1 st excited state for a free electron in a one-dimensional infinite potential well of dimension L. (10) (b) A free electron is inside potential in two-dimensional box is given as $V = \begin{cases} 0 \text{ for } 0 \le x \le 2L, 0 \le y \le L \\ \infty \text{ for } x < 0, y < 0, x > 2L \text{ and } y > L \end{cases}$ Find the energy and wave function of the first three states. (10)	20	CO4			

Constant	Standard Values
Planck's Constant (<i>h</i>)	6.63×10^{-34} J. s
Permittivity of free space (ε_0)	$8.85 \times 10^{-12} \ Fm^{-1}$
Velocity of light (<i>c</i>)	$3 \times 10^{8} ms^{-1}$
Boltzmann constant (k_B)	$1.38 \times 10^{-23} \mathrm{JK^{-1}}$
Rest mass of an Electron (m_o)	$9.11 \times 10^{-31} \text{ kg}$
Mass of the proton (m_p)	1.67×10^{-27} kg
Charge of an electron (<i>e</i>)	$1.6 imes 10^{-19} \mathrm{C}$