Name:

Enrolment No:

UPES Destor Examination Decom

End Semester Examination, December 2024

Course: Solid State Physics Program: B.Sc. Physics (H) Course Code: PHYS 3021 Semester: V Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. Use of Scientific calculator is allowed.

SECTION A					
All questions are compulsory.					
S. No.		Marks	СО		
Q 1	Determine the nearest-neighbor distance for a Face-Centered Cubic (FCC) crystal structure.	4	CO2		
Q 2	Explain how an external magnetic field affects ferromagnetic domains.	4	CO3		
Q 3	Draw the fermi-energy diagram for intrinsic and extrinsic semiconductors.	4	CO2		
Q 4	Write a note on Ferrimagnetic materials.	4	CO1		
Q 5	Draw a neat and labelled polarization vs Electric field curve for ferroelectric materials.	4	CO2		
	SECTION B				
All questions are compulsory. Question 9 has internal choice.					
Q 6	Explain Bragg's law and derive its expression.	10	CO1		
Q 7	Starting from the expressions for Einstein's specific heat equation and Debye's specific heat equation, demonstrate that both equations converge to Dulong and Petit's law at high temperatures.	10	CO2		
Q 8	Calculate the current produced in a Germanium crystal having cross sectional area 2 cm ³ and length 0.4 mm when a potential difference of 1.5 V is applied. Given: concentration of free electrons in Germanium crystal is 2×10^{19} m ⁻³ and the mobilities of electron and hole are 0.36 and 0.17 m ² .V ⁻¹ .s ⁻¹ respectively.	10	CO3		
Q 9	What do you mean by the London penetration depth? Show that the London penetration depth is given by the expression $\lambda = \left(\frac{m}{\mu_o e^2 n_s}\right)^{1/2}$ where, the symbols have their usual meanings. OR	10	CO2		

	What is pyroelectricity? Explain with the help of an example.			
SECTION-C				
All questions are compulsory. Question 11 has internal choice.				
Q 10	(a) Calculate the critical magnetic field for Tin at 1.5K and 2.5K. The following data for Tin are given $T_c = 3.72K$ and $H_c = 30.5 \times 10^{-3}$ T at 0K	10		
	 (b) The polarizability of ammonia molecule is found by measuring the dielectric constant approximately as 2.42 x 10⁻³⁹ C²m/N at 309K and 1.74 x 10⁻³⁹ C²m/N at 448 K. Calculate the orientational polarizability of ammonia molecule at 309 and 448 K. 	10	CO4	
Q 11	Prove that the Langevin-Debye equation in dielectrics is			
	$P = NE \left\{ 4\pi\varepsilon_o R^3 + \frac{e^2}{\omega_o^2} \left(\frac{1}{m} + \frac{1}{M}\right) + \frac{\mu^2}{3kT} \right\}$ where, the symbols have their usual meanings. OR Prove that the local field for structures possessing cubic symmetry is given by $E_L = E + \frac{P}{3\varepsilon_o}$ where, the symbols have their usual meanings.	20	CO2	
Values of some physical constants:				
Planck' Boltzma Mass of Charge Mass of Speed o Rydberg Avogad Permitti Permea	s constant, $h = 6.6 \times 10^{-34} \text{ J.s}$ ann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$ F electron, $m_e = 9.1 \times 10^{-31} \text{ Kg}$ on an electron, $e = 1.6 \times 10^{-19} \text{ C}$ F proton, $m_p = 1.67 \times 10^{-27} \text{ Kg}$ of light, $c = 3 \times 10^8 \text{ m/s}$ g Constant, $R = 1.097 \times 10^7 \text{ m}^{-1}$ tro's number = 6.023×10^{23} ivity of free space, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ bility of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$			