Name:

Enrolment No:

Nos. of page(s)

UPES

End Semester Examination, December 2024

Programme Name: B. Tech (Electronics & Communication Engineering) / Electronics & Computer Engineering)

Course Name : VLSI Design
Course Code : ECEG-3049

: 02

Time : 03 Hrs Max. Marks : 100

Semester: V

Instructions: Assume any data in programming, if required.

SECTION A ($4 \times 5 = 20 \text{ Marks}$)

Attempt all the questions

S. No.	pt an the questions	Marks	CO
Q.1	Discuss the ASIC Design Flow in detail and detail the different abstraction levels in ICs with example.	5	CO1
Q.2	Realize the output of the logic diagram shown in Fig. 1 VDD CK VDD CK CK CK (a) Fig. 1 CMOS Realization	5	CO3
Q.3	What are the different styles of modeling followed in VHDL based design. Design a full adder using data flow and behavioral model.	5	CO4
Q.4	Draw the logic diagram and functional table to support common cathode display of the 7-segment display (0 to 9) and develop the code in VHDL programing language to support the same functionality. Common Cathode Display Fig. 2 Common Cathode -7 Segment Display	5	CO5

	SECTION B $(4 \times 10 = 40 \text{ Marks})$				
Attempt all the questions					
Q.5	(a) Explain the concept of propagation delay and Noise Margin with examples in MOSFET circuits. (b) Realize the following functions using NMOS and CMOS. $Y = \overline{A \cdot (B + CD)}$ $Y = \overline{X + Y + Z}$	10	CO2		
Q.6	What is the significance of stick diagram and layout diagram for understanding MOSFET design? Draw the stick diagram and layout design of 2 input NAND and XOR gate based on CMOS logic. OR Detail the fabrication process of npn-BJT transistor.	10	CO3		
Q.7	Detail the functionality of enhancement type NMOS/PMOS under different regions. Explain the drain voltage characteristics and transfer characteristics in detail	10	CO1		
Q.8	Draw the voltage transfer curve for the NMOS/CMOS inverter and derive the mathematical expression to estimate the value of V_{OH} , V_{OL} , V_{IL} and V_{IH} for NMOS/CMOS inverter circuit and detail the functionality.	10	CO2		
	SECTION-C $(2 \times 20 = 40 \text{ Marks})$				
Attempt any two the followings					
Q.9	(a) Draw the cross-sectional view of CMOS. Detail all the steps and fabrication process of CMOS using P-Well Process.(b) Draw the FPGA design flow used for synthesis the logic. Draw the architecture of any one of the FPGA and explain the functionality: XC 3000, SPARTAN 6, Virtex 7.	10+10	СО3		
Q.10	(a) Consider a process technology for which $L_{min} = 0.4 \ \mu m$, tox = 8 nm, $\mu_n = 450 \ cm^2/V$ -s and $V_t = 0.7 \ V$ (i) Find C_{ox} and K'_n (ii) For a MOSFET with W/ L = 8 $\mu m/0.8 \ \mu m$, Calculate the value of V_{GS} and V_{DSmin} needed to operate the transistor in the saturation region with a dc current $I_D = 100 \mu A$. (iii) For the same device, find the value of V_{GS} required to cause the device to operate as a $1000 \ \Omega$ resistor for very small V_{DS} .	10+10	CO4		
Q.11	(b) Derive the mathematical equation of PMOS/NMOS for saturation and active regions.(a) Design the chip using VHDL/ Verilog HDL that supports the following behaviour.	10+10			
V.11	Binary Binary Inputs B Ao A1 A2 A3 B0 B1 B2 B3 (LSB) (MSB) (LSB) (MSB) (LSB) (MSB) A < B Comparator A > B Comparison Outputs	10+10	CO5		
	(b) Draw the structure of CPLD (Max Altera 7000) and explain the functionality. Compare the CPLD with FPGA.				