Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Applied Machine Learning

Program: B. Tech Mechanical & Mechatronics

Course Code: MECH3059

Semester: V

Time : 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. The question paper consists of 11 questions divided into 3 sections A, B and C. Section A comprises 5 questions of 4 marks each, Section B comprises 4 questions of 10 marks each and Section C comprises 2 questions of 20 marks each.

SECTION A						
(5Qx4M=20Marks)						
S. No.		Marks	CO			
Q 1	Compare ReLU and sigmoid activation functions.	4	CO1			
Q 2	A layer 'L' in a neural network has 5 neurons and the previous layer has 4 neurons. How many model parameters are associated with layer L?	4	CO2			
Q 3	Describe the matrix notation for getting activation from layer l (that is L) in a neural network.	4	CO1			
Q 4	Explain vectorization in implementing machine learning algorithms and its advantage? Give an example	4	CO1			
Q 5	Linear regression is not a good algorithm for classification. Discuss with an example	4	CO1			
	SECTION B					
(4Qx10M = 40 Marks)						
Q 6	Given two features, x1 (Range 1-5) and x2 (Range 10000-14000), what step will you take before applying gradient descent to ensure fast convergence.	10	CO2			
Q 7	For given confusion matrix calculate (A)Precision (b)Recall (C)f1-score [[45,1], [11,33]],	10	CO2			
Q 8	Describe the algorithmic steps of the K-Means Cluster method	10	CO1			
Q 9	What is Information Gain and how is it used for deciding the feature for splitting in Decision tree?	10	CO2			
	SECTION-C					
(2Qx20M=40 Marks)						
Q 10	Consider the data for a linear regression problem given below. The raw data has x_1, x_2 and y. Manually do only 1 iteration of Gradient Descent for Linear regression on this data. In calculations, take initial guess as	20	CO3			

$w_1 = 2, w_2 = 1, b = 1$. Use learning rate $\alpha = 0.1$. After doing 1 iteration
of Gradient Descent, also determine the equation for regression and the
prediction for the following input $x_1 = 1, x_2 = 3$

All calculations must be shown clearly.

x_1	x_2	у
2	3	15
3	2	12
1	0	2
0	2	8

OR

Implement K-Means algorithms for a given set of data using K = 2.

Individual	Variable 1	Variable 2
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

Q 11 Consider a hypothetical Neural Network with just two neurons with ReLU activation in layer 1 and Linear activation in layer 2.

The cost function is defined by the mean square error as

$$J = \frac{1}{2} \left(a^{[2]} - y \right)^2$$

Assuming $w^{[1]}=3$, $b^{[1]}=2$, $w^{[2]}=2$, $b^{[2]}=4$ and a single data point of x=3 & y=4, show the forward propagation as well as back propagation steps through a computational graph and determine the value of updated model parameters $w^{[1]}$, $b^{[1]}$, $w^{[2]}$, $b^{[2]}$ after first iteration assuming learning rate $\alpha=0.1$

20

CO3