Name:

Enrolment No:

	UPES			
C	End Semester Examination, December 2024	с л	•	
			Semester: VII	
		Time: 03 hrs.		
Course Code: CHEM4001			Max. Marks: 100	
	tions: Attepmts all questions. Questions 9 and 10 are having internal choices.			
	SECTION A			
	(5Qx4M=20Marks)	-	I	
S. No.		Marks	CO	
Q 1	Discuss Stokes shift in Raman spectroscopy.	4	CO1	
Q 2	What is rock salt? Which ions are present in this salt? How do these ions arrange in the three-dimensional structure?	4	CO3	
Q 3	Derive $\mathbf{n\lambda} = 2d\mathbf{Sin}\boldsymbol{\theta}$		CO3	
	where λ is the wavelength, d = path difference, θ = angle of incident	4		
	where λ is the wavelength, $u = path unreferee, 0 = angle of meldent beam$			
Q 4	How many types of protons are present in the following molecule?		1	
		4	CO2	
0.5	(a) CH ₃ COOH; (b) CH ₃ CH ₂ OH			
Q 5	Compare the potential radiative and non-radiative transitions in Emission spectroscopy.	4	CO2	
	SECTION B	1		
	(4Qx10M= 40 Marks)			
Q 6	Describe Miller indices. Give some examples.	10	CO3	
Q 7	Why do acetylenic protons more shielded than aromatic protons in	10	CO2	
<u> </u>	NMR spectroscopy?	10		
Q 8	What is the difference between the orthorhombic and monoclinic	10	CO3	
Q 9	crystal systems? What is quenching in emission spectroscopy? How does it affect the intensity of emitted light?			
	Or	10	CO3	
	Why do some nuclei show doublet, triplet, or quartet patterns in 1H- NMR spectra? Give appropriate examples.			

	SECTION-C (2Qx20M=40 Marks)		
Q 10	What is TMS (tetramethylsilane)? Why are the importance of TMS in NMR spectroscopy? How do thr "upfield" and "downfield" shifts are associated with TMS? Or Outline fundamental differences and utilities of the X-ray diffraction, Electron diffraction and Neutron diffraction methods. How do these methods applicable in material characterizations?	20	CO3
Q 11	Why do the chemical shifts of α and β protons vary in the given α,β - unsaturated compounds? Explain in detail. $H_{3}C \xrightarrow{H} CH_{3} \xrightarrow{H} H_{3}C \xrightarrow{H} CH_{3} \xrightarrow{H} H_{3}C \xrightarrow{H} H_{3}C \xrightarrow{H} A$	20	CO2