T. T				
100	a	m	Δ	٠

Enrolment No:

Semester: |

UPES

End Semester Examination, December 2024

Course: Introduction to Microbiology

Program: BSC-MICROBIOLOGYDuration: 3 HoursCourse Code: HSMB1011_6Max. Marks: 100

Instructions: "Not Applicable"

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	A researcher is studying a microorganism that thrives in	1.5	CO1
	extremely salty environments. Which group of microorganisms		
	is most likely being studied -		
	A) Bacteria		
	B) Archaea		
	C) Fungi		
	D) Protozoa		
Q 2	Considering the fossil evidence of microorganisms and the	1.5	CO1
	geological time scale, which of the following best describes the		
	earliest life forms on Earth -		
	A) They were complex, multicellular organisms that appeared 1		
	billion years ago.		
	B) They were prokaryotic, unicellular organisms that appeared		
	around 3.5 billion years ago.		
	C) They were large, eukaryotic cells with distinct organelles.		
	D) They were viruses that evolved from larger organisms.		
Q 3	You are given a sample of a microorganism with a size of 1–10	1.5	CO1
	μm and no visible nucleus. Based on this information, which of		
	the following is the most likely classification of the		
	microorganism -		
	A) Bacterium		

	B) Protozoa		
	C) Algae		
	D) Fungi		
Q 4	Carl Woese's three-domain system of classification is based on	1.5	CO1
	which of the following characteristics -		
	A) Physical appearance and behavior of microorganisms		
	B) Genetic similarities, especially ribosomal RNA (rRNA)		
	sequences		
	C) Ecological roles in their respective environments		
	D) The ability to form biofilms		
Q 5	The first observation of microorganisms using a microscope was	1.5	CO1
	performed by		
	A) Robert Koch		
	B) Louis Pasteur		
	C) Anton von Leeuwenhoek		
	D) Joseph Lister		
Q 6	A practical application of Alexander Fleming's discovery of	1.5	CO1
	penicillin is		
	A) The development of the first synthetic vaccine.		
	B) The ability to treat bacterial infections effectively with		
	antibiotics.		
	C) The creation of antiseptic techniques in surgery.		
	D) The development of the first microbiological media for		
	bacterial culture.		
Q 7	Paul Ehrlich contributed to the development of microbiology	1.5	CO1
	and immunology as		
	A) He discovered the role of bacteria in fermentation.		
	B) He developed the concept of selective toxicity, leading to the		
	development of chemotherapy.		
	C) He pioneered the germ theory of disease.		
	D) He identified microorganisms responsible for soil nitrogen		
	fixation.		
Q 8	The scientist associated with the development of the first	1.5	CO1
	vaccine for smallpox was		
	A) Edward Jenner		
	B) Paul Ehrlich		
	C) Elie Metchnikoff		
	D) Alexander Fleming		
Q 9	Characteristics that distinguish prions from other infectious	1.5	CO2
	agents like bacteria or viruses -		
	A) Prions are composed of RNA, while viruses are composed of		
	DNA.		

	B) Prions are composed solely of protein, with no nucleic acid		
	component.		
	C) Prions cause viral infections, unlike bacteria.		
	D) Prions have a DNA-based genome that can be transmitted.		
Q 10	The primary difference between the lytic and lysogenic cycles of	1.5	CO2
	a bacteriophage		
	A) In the lytic cycle, the phage integrates its genome into the		
	host's DNA, whereas in the lysogenic cycle, the phage destroys		
	the host cell.		
	B) The lytic cycle results in the destruction of the host cell, while		
	the lysogenic cycle does not immediately destroy the host cell.		
	C) In both cycles, the host cell is destroyed immediately.		
	D) The lysogenic cycle involves the production of new viral		
	particles, while the lytic cycle does not.		
Q 11	The following is true about the shape and arrangement of	1.5	CO2
	prokaryotic cells -		
	A) Prokaryotic cells are always spherical (cocci) in shape.		
	B) Prokaryotic cells can be found in rod, spherical, or spiral		
	shapes, and can exist singly or in groups.		
	C) Prokaryotic cells never form clusters or chains.		
	D) All prokaryotic cells are spiral-shaped (spirilla).		
Q 12	Following is the primary function of the cell wall in prokaryotic	1.5	CO2
	cells -		
	A) To regulate gene expression		
	B) To protect the cell and provide structural support		
	C) To store genetic material		
	D) To produce energy through respiration		
Q 13	The following is a characteristic of parasitism -	1.5	CO2
	A) Both organisms benefit equally.		
	B) One organism benefit at the expense of the other.		
	C) Both organisms are harmed.		
	D) Neither organism is affected.		
Q 14	The term used for organisms that transmit parasites to humans -	1.5	CO2
	A) Hosts		
	B) Vectors		
	C) Carriers		
	D) Pathogens		
Q 15	The following is a mode of transmission for protozoa like	1.5	CO2
~ 10	Plasmodium -	1.0	
	A) Direct contact		
	B) Airborne transmission		
	b) All bottle (tallstillssion		

	C) Vector-borne transmission (e.g., mosquitoes)		
	D) Waterborne transmission		
Q 16	A method of preserving microorganisms that involves drying	1.5	CO3
Q	them under a vacuum at low temperatures -		
	A) Slant culture		
	B) Lyophilization (freeze-drying)		
	C) Stab culture		
	D) Soil culture		
Q 17	A physical method of sterilization is	1.5	CO3
	A) Ethylene oxide gas		
	B) Autoclaving (steam under pressure)		
	C) Hydrogen peroxide		
	D) lodine solution		
Q 18	The bacteria that would be best identified using an endospore	1.5	CO3
	staining technique -		
	A) Staphylococcus aureus		
	B) Bacillus subtilis		
	C) Escherichia coli		
	D) Salmonella enterica		
Q 19	The principle behind Gram staining -	1.5	CO3
	A) It differentiates bacteria based on their ability to metabolize		
	sugar.		
	B) It differentiates bacteria based on the composition of their cell		
	wall.		
	C) It differentiates bacteria based on their flagella.		
	D) It differentiates bacteria based on their DNA sequence.		
Q 20	The primary purpose of staining in microbiology -	1.5	CO3
	A) To kill microorganisms		
	B) To enhance the visibility of microorganisms under a		
	microscope		
	C) To identify microorganisms by their metabolic activity		
	D) To break down bacterial cell walls		
	Section B		
0.1	(4Qx5M=20 Marks)		CO2
Q 1	Explain Carl Woese's three kingdom classification system with	5	CO2
0.2	examples.		CO2
Q 2	Provide the significance and transmission of Viroids and Prions.	5	CO2
Q3	Analyze the general characteristics of algae compared to bacteria	5	CO1
0.4	and fungi.		CO2
Q 4	Categorize various Staining techniques. Provide the importance of	5	CO3
	staining in microbiology.		

	Section C		
	(2Qx15M=30 Marks)		
Q 1	A newborn has a kind of blood stream infection. The mother of	5+5+5	CO1
	the newborn went to the doctor and told him that the baby has		
	a bacterial infection.		
	Elucidate the bacterial infection baby can probably have?		
	2. Discuss the approaches that are recommended to identify		
	these bacteria?		
	3. Analyze the best approach for their identification in the		
	clinical laboratory in a timely manner, Screening to Confirmatory?		
Q 2	You are the lab supervisor at a research facility. During a routine	5+5+5	CO3
	inspection, you discover that some lab equipment, such as petri		
	dishes and pipettes, have not been properly sterilized, leading to		
	contamination in several experiments. The lab staff is concerned		
	about the possibility of compromised results and the potential		
	risks of cross-contamination.		
	Classify sterilization methods are commonly used in		
	laboratories, and how do they work?		
	As a microbiologist explains the risks of improper sterilization in a lab environment?		
	3. If contamination is found due to improper sterilization,		
	enlist the approaches to lab address the issue and		
	prevent future occurrences?		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Bacteriophage attaching to bacterial cell Bacterial cell Bacterial genetic material Bacterial genetic material	6+4	CO2
	Growth and multiplication of bacterial cell Phage genetic material incorporated in bacterial genetic material.		
	Phage Genetic material passed on to future		
	generations of bacteria		
	1. Elucidate the above diagram. Describe the above		
	process.		

	2. Enlist two Gram positive and two Gram negative bacteria which are pathogenic in nature?		
Q 2	3 4 9 9 10 10	7+3	CO3
	1. Name the numbers mentioned above of simple microscope. Describe the light path of a microscope.		
	2. Differentiate resolution and magnification. To improve the image quality, Identify the parameter that should be primarily focused.		