Name:

Enrolment No:

UPES

End Semester Examination Dec – 2024

Program Name: MSc Microbiology Semester : I
Course Name: Microbial Diversity and Taxonomy Time : 3 hrs
Course Code: HSMB7034 Max. Marks : 100

Nos. of page(s): 3 Instructions:

- 1) Answer all the questions after carefully going through the instructions.
- 2) Support answers with flow-charts and labelled diagrams wherever necessary.

S.	Section A	Marks	COs
No.	Short answer questions/ MCQ/T&F		
	$(20Q \times 1.5M = 30 \text{ Marks})$		
Q 1	Mention the causative agent of <i>Leishmaniasis</i> .	1.5	CO1
Q2	The correct order of taxonomic groups from higher to lower rank is:	1.5	CO1
	(a) Kingdom—Order—Class—Family		
	(b) Order—Class—Division—Family—Genus—Species		
	(c) Kingdom—Order—Division—Family—Class—Genus—Species		
	(d) Kingdom—Phylum—Class—Order—Family—Genus—Species		
Q3	Mention an example of prokaryotes that lack cell wall.	1.5	CO1
Q4	Mention key phylogenetic markers to identify prokaryotes.	1.5	CO2
Q5	Name the scientist who proposed the phylogenetic tree for living things.	1.5	CO
	(a) Carlo Urbani		
	(b) Louis Pasteur		
	(c) Robert Koch		
	(d) Carl Woese		
Q6	Identify the genera that typically represents pleomorphic cells:	1.5	CO1
	(a) Mycobacteria		
	(b) Streptococcus		
	(c) Pseudomonas		
	(d) Corynebacterium		
Q6	Acid present in the cell wall of bacteria which helps in retaining its color during	1.5	CO
	the acid-fast test?		
	(a) Mycolic acid		
	(b) Teichoic acid		
	(c) Malic acid		
	(d) Tartaric acid		
Q7	Define Candidatus species.	1.5	CO2

Q8	Define metagenomic library.	1.5	CO1
Q9	Mention a key chemotaxonomic test that can differentiate between bacteria and	1.5	CO3
	archaea.		
Q10	Define great plate count anomaly.	1.5	CO1
Q11	State the utility of Simpson's Diversity Index.	1.5	CO1
Q12	Mention the correct taxonomic hierarchy of E Coli.	1.5	CO2
Q13	MTCC stands for	1.5	CO1
Q14	Updated guidelines of ICSP to infer phylogenetic assignments of prokaryotes is:	1.5	CO1
	(a) Bergey's manual of systematic bacteriology.		
	(b) Bergey's manual of determinative bacteriology.		
	(c) Bergey's manual of systematics of Archaea and Bacteria.		
	(d) Bergey's manual of determinative microbiology.		
Q15	In the fungal classification system Ascomycetes come under the division of:	1.5	CO2
	(a) Gymnomycota		
	(b) Mastigomycota		
	(c) Amastigomycota		
	(d) Gymnomycota		
Q16	Rhizopus stolonifer belongs to which class?	1.5	CO1
	(a) Acrasiomycetes		
	(b) Zygomycetes		
	(c) Ascomycetes		
	(d) Deuteromycete		
Q17	Fruiting bodies of slime moulds are called	1.5	CO2
	(a) acervulus		
	(b) sori		
	(c) apothecium		
	(d) perithecium		
Q18	Mention an example of fungi that produces aflatoxins.	1.5	CO2
Q19	Extensive sequential nucleotide analysis and analysis of rRNA has divided the	1.5	CO2
	living world into three domains called:		
	(a) bacteria, archaea and eucarya.		
	(b) procarya, eucarya and animals.		
	(c) fungi, plants and animals.		
	(d) archaea, eucarya and viruses.		
	(e) bacteria, archaea and cyanobacteria.		
Q20	Define a taxon.	1.5	CO1

	Section B					
(4Qx5M=20 Marks)						
Q1	Explain the concepts of alpha and beta diversity with examples.	5	CO1			
Q2	Describe the salient characteristics of class Ascomycota.	5	CO2			
Q3	Explain the principles of IMViC tests and their importance.	5	CO2			
Q4	Design an experiment to study the diversity of anaerobes from soil.	5	CO3			
Section C						
(2Qx15M=30 Marks)						
Q 1	Describe and compare electron flows of anoxygenic and oxygenic phototrophic	15	CO3			
	prokaryotes that drives ATP synthesis and generates reducing power.					
Q2	Discuss and outline the key steps of polyphasic taxonomy required for	15	CO2			
	nomenclature of a new species.					
	Section D					
	(2Qx10M=20 Marks)					
Q1	Mention the main classes of phylum Pseudomonadota and discuss in details the	10	CO2			
	key taxonomic characteristics of the phylum γ -proteobacteria.					
Q2	Discuss the life cycle of <i>Plasmodium</i> with help of a labelled diagram.	10	CO3			