T T				
	a	m	Λ	٠

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Introduction to Biotechnology
Program: B.Tech Biotechnology
Course Code: HSBT1004
Semester: I
Duration: 3 Hours
Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Who is known as the "Father of Biotechnology"?	1.5	CO1
	a) Gregor Mendel		
	b) Louis Pasteur		
	c) Károly Ereky		
	d) Alexander Fleming		
Q 2	Which organelle contains hydrolytic enzymes?	1.5	CO1
	a) Lysosome		
	b) Vacuole		
	c) Golgi apparatus		
	d) Endoplasmic reticulum		
Q 3	Which phase of microbial growth is characterized by exponential	1.5	CO1
	cell division?		
	a) Lag phase		
	b) Log phase		
	c) Stationary phase		
	d) Death phase		
Q 4	Which of the following is considered an ancient biotechnology	1.5	CO1
	practice?		
	a) DNA sequencing		
	b) Fermentation for brewing beer		
	c) Genetic engineering of crops		
	d) PCR (Polymerase Chain Reaction)		
Q 5	Which branch of biotechnology focuses on the industrial	1.5	CO1
	production of enzymes and biofuels?		
	a) Medical biotechnology		
	b) Environmental biotechnology		
	c) Industrial biotechnology		
	d) Agricultural biotechnology		
Q 6	During replication, which enzyme unwinds the DNA helix?	1.5	CO2

	a) Ligase		
	b) Helicase		
	c) Primase		
0.7	d) Topoisomerase	1.5	CO2
Q 7	In prokaryotes, transcription and translation occur:	1.5	CO2
	a) Simultaneously		
	b) Sequentially, in different locations		
	c) Only during cell division		
0.0	d) Within the nucleus		000
Q 8	Which is the most commonly used host organism in recombinant	1.5	CO2
	DNA technology?		
	a) Yeast		
	b) Escherichia coli		
	c) Fruit flies		
	d) Tobacco plants		
Q 9	Which is a part of the innate immune system?	1.5	CO2
	a) Antibodies		
	b) Skin barrier		
	c) T cells		
	d) Plasma cells		
Q 10	What is the purpose of GMOs in agriculture?	1.5	CO2
	a) To increase yield and resistance to pests		
	b) To prevent climate change		
	c) To eliminate the need for fertilizers		
	d) To grow crops faster		
Q 11	Somatic hybridization involves the fusion of:	1.5	CO3
	a) Two somatic cells		
	b) Somatic and gametic cells		
	c) Two gametic cells		
	d) A cell and its nucleus		
Q 12	What is a Ti plasmid?	1.5	CO3
	a) A bacterial plasmid used in animal cell transformation		
	b) A vector derived from Agrobacterium tumefaciens		
	c) A viral genome used in plant transformation		
	d) None of the above		
Q 13	What do you mean by callus culture?	1.5	CO3
Q 14	Which gene is commonly used in genetically modified crops for	1.5	CO3
	herbicide resistance?		
	a) Cry gene		
	b) EPSPS gene		
	c) Ribosomal gene		
	d) GFP gene		
Q 15	What is the function of the Cry protein in Bt crops?	1.5	CO3
2.0	a) To increase growth rate		

	b) To kill insect pests			
	c) To improve nutritional value			
	d) To enhance photosynthesis			
Q 16	Which technique is used to determine the nucleotide sequence of	1.5	CO4	
	DNA?			
	a) PCR			
	b) Sanger sequencing			
	c) Southern blotting			
	d) ELISA			
Q 17	Which active ingredient in turmeric is responsible for its medicinal	1.5	CO4	
	properties?			
	a) Curcumin			
	b) Quinine			
	c) Resveratrol			
	d) Lycopene			
Q 18	Which method uses fluorescent dyes to monitor DNA	1.5	CO4	
	amplification in real-time?			
	a) Conventional PCR			
	b) RT-PCR			
	c) qPCR			
	d) ELISA			
Q 19	Define GMOs. Give an example of a transgenic plant.	1.5	CO4	
Q 20	The production of secondary metabolites requires the use of	1.5	CO4	
	(a) Meristem culture			
	(b) Protoplast culture			
	(c) Axillary buds culture			
	(d) Cell suspension culture			
	Section B: Short-Answer Questions			
	(4Qx5M=20 Marks)			
Q 1	With the help of an example, discuss the importance of rDNA	5	CO1	
	technology in the field of medicine?			
Q 2	Define macromolecules? Discuss four major types of	5	CO2	
	macromolecules and their function.			
Q 3	Write a short note on animal cell culture. Provide an example of a	5	CO3	
	genetically modified animal and its benefits.			
Q 4	What are GMOs. List the advantages and concerns associated with	5	CO4	
	GMOs.			
	Section C: Case study			
	(2Qx15M=30 Marks)			
Q 1	Bt cotton, a genetically modified (GM) crop, has been engineered	15 marks	CO2	
	to produce a toxin (Cry protein) from the bacterium Bacillus	(5 marks		
	thuringiensis (Bt). This toxin targets common pests like the	each)		
	bollworm, reducing crop damage and the need for chemical			

	pesticides. Since its commercialization in 1996, Bt cotton has		
	significantly increased yields, particularly in pest-prone regions		
	such as India and parts of Africa		
	Based on your understanding of GM crops, answer the following		
	questions:		
	A) Discuss the primary genetic modification in Bt cotton, and how does it benefit the crop?		
	B) Explain the environmental advantages of Bt cotton compared to		
	conventional varieties. Discuss the economic impact of Bt		
	cotton on small-scale farmers.		
	C) Describe challenges or concerns that have emerged with the		
	adoption of Bt cotton?		
Q 2	Dr. Ananda Chakrabarty is most famous for his groundbreaking	15 marks	CO3
	work in the 1970s when he successfully genetically engineered a	(5 marks	
	new strain of Pseudomonas bacteria capable of breaking down crude	each)	
	oil. This development had enormous potential for environmental		
	cleanup, particularly in the context of oil spills. His creation of this		
	genetically modified microorganism led to the granting of the first-		
	ever patent on a living organism by the United States Patent and		
	Trademark Office (USPTO) in 1980.		
	Answer the following questions:		
	A) What was Dr. Ananda Chakrabarty's groundbreaking		
	achievement in the field of biotechnology, and why was it		
	significant in the context of environmental cleanup?		
	B) Discuss the key steps involved in developing recombinant		
	bacteria with desired characteristics?		
	C) List the potential benefits and risks of using genetically		
	modified organisms (GMOs) for environmental cleanup?		
	Section D: Long-Answer Questions	ı	
	(2Qx10M=20 Marks)		
Q 1	a) Discuss the role of Agrobacterium tumefaciens in plant	5+5 marks	CO3
	transformation?		
	b) Mention any three chemical gene transfer methods that are used		
	to introduce recombinant DNA into a competent host cell.		
Q 2	Explain the role of bioinformatics in drug design, emphasizing	10 marks	CO4
	computational techniques and databases used in identifying drug		
	targets and designing novel drugs.		
	OR		
	Explain the concept of biopharmaceuticals and discuss their		
	production methods, with a focus on recombinant DNA technology		
	and the role of expression systems (e.g., bacteria, yeast, mammalian		
	cells).		