| Name:         | <b>WUPES</b>           |
|---------------|------------------------|
| Enrolment No: | UNIVERSITY OF TOMORROW |
| TIDES         |                        |

**UPES** 

Semester:3rd

**Duration: 3 Hours** 

End Semester Examination, December 2024 Course: Molecular Biology and Genetics

Program: BT-BIOMEDICAL & BT-BIOTECHNOLOGY

Course Code: HSBE2005 Max. Marks: 100

**Instructions: Attempt all questions** 

| S. No.     | Section A                                                   | Marks | COs |
|------------|-------------------------------------------------------------|-------|-----|
|            | Short answer questions/ MCQ/T&F                             |       |     |
|            | (20Qx1.5M = 30 Marks)                                       |       |     |
| Q 1        | If the DNA strand has nitrogenous base sequence 3'ATTGCC5', | 1.5   | CO3 |
|            | will the mRNA have?                                         |       |     |
|            | A. 5'ATTGCA3'                                               |       |     |
|            | B. 3'UAACGG5'                                               |       |     |
|            | C. 5'UAACGG3'                                               |       |     |
| 0.0        | D. 3'ATCGCC5'                                               |       |     |
| Q 2        | DNA replication is                                          |       |     |
|            | A. conservative                                             |       |     |
|            | B. conservative and semi-discontinuous                      | 1.5   | CO1 |
|            | C. semi-conservative and discontinuous                      |       |     |
|            | D. semi-conservative and semi-discontinuous                 |       |     |
| Q 3        | The <u>core</u> histone proteins are                        | 1.5   | CO2 |
| Q 4        | The number of replicons is found in E. coli?                |       |     |
|            | A. Five replicon                                            |       |     |
|            | B. Two replicon                                             | 1.5   | CO2 |
|            | C. Single replicon                                          |       |     |
|            | D. Multiple replicon                                        |       |     |
| Q 5        | The segregation of allelic pair occurs during meiosis       | 1.5   | CO2 |
|            | stage                                                       | 1.5   | CO3 |
| Q 6        | An enzyme performs decatenation?                            |       |     |
|            | A. Polymerase                                               |       |     |
|            | B. Topoisomerase                                            | 1.5   | CO2 |
|            | C. Telomerase                                               |       |     |
|            | D. Decatenase                                               |       |     |
| <b>Q</b> 7 | Who discovered the structure of DNA?                        | 1.5   | CO1 |
|            | A. Meischer                                                 |       |     |
|            | B. Avery                                                    |       |     |
|            |                                                             |       |     |

|      | C. Watson and Crick                                              |     |     |
|------|------------------------------------------------------------------|-----|-----|
|      | D. Franklin                                                      |     |     |
| Q 8  | RNA cannot store genetic information. (True or False)            | 1.5 | CO1 |
| Q 9  | DNA supercoiling is primarily managed by which enzyme?           | 1.5 | CO2 |
|      | A. DNA polymerase                                                |     |     |
|      | B. DNA helicase                                                  |     |     |
|      | C. DNA topoisomerase                                             |     |     |
|      | D. DNA ligase                                                    |     |     |
| Q 10 | The Meselson-Stahl experiment proved DNA replication is:         | 1.5 | CO4 |
|      | A. Discontinuous                                                 |     |     |
|      | B. Conservative                                                  |     |     |
|      | C. Semi-conservative                                             |     |     |
|      | D. Random                                                        |     |     |
| Q 11 | Okazaki fragments are synthesized on the leading strand during   | 1.5 | CO2 |
| ~    | replication. (True or False)                                     |     |     |
| Q 12 | Which enzyme catalyzes the synthesis of RNA from a DNA           | 1.5 | CO2 |
|      | template?                                                        |     |     |
|      | A. DNA polymerase                                                |     |     |
|      | B. RNA polymerase                                                |     |     |
|      | C. Helicase                                                      |     |     |
|      | D. Primase                                                       |     |     |
| Q 13 | Alternative splicing can produce multiple proteins from a single | 1.5 | CO2 |
|      | gene. (True or False)                                            |     |     |
| Q 14 | In rho-independent termination, the RNA transcript forms a:      | 1.5 | CO1 |
|      | A. Stem-loop structure                                           |     |     |
|      | B. Promoter complex                                              |     |     |
|      | C. Poly-A tail                                                   |     |     |
|      | D. Sigma factor                                                  |     |     |
| Q 15 | What is the first amino acid incorporated during translation in  | 1.5 | CO2 |
|      | prokaryotes?                                                     |     |     |
|      | A. Methionine                                                    |     |     |
|      | B. Formyl-methionine                                             |     |     |
|      | C. Serine                                                        |     |     |
|      | D. Glycine                                                       |     |     |
| Q 16 | Aminoacyl-tRNA synthetase charges tRNA with the correct amino    | 1.5 | CO1 |
|      | acid. (True or False)                                            |     |     |
| Q 17 | A cross between a tall pea plant (TT) and a dwarf pea plant (tt) | 1.5 | CO4 |
|      | results in:                                                      |     |     |
|      | A. All tall offspring                                            |     |     |
|      | B. All dwarf offspring                                           |     |     |
|      | C. A 3:1 tall to dwarf ratio                                     |     |     |
|      | D. A 1:1 tall to dwarf ratio                                     |     |     |
| Q 18 | Aneuploidy is a chromosomal mutation involving changes in the    | 1.5 | CO1 |
|      | arrangement of genes. (True or False)                            |     |     |

| Q 19 | DNA methylation typically occurs at which nucleotide sequence?     | 1.5 | CO1 |
|------|--------------------------------------------------------------------|-----|-----|
|      | A. GC                                                              |     |     |
|      | B. AT                                                              |     |     |
|      | C. CpG                                                             |     |     |
|      | D. TA                                                              |     |     |
| Q 20 | Name one epigenetic mechanism that can silence gene expression.    | 1.5 | CO2 |
|      | (True or False)                                                    |     |     |
|      | Section B                                                          |     |     |
|      | (4Qx5M=20 Marks)                                                   |     |     |
| Q 1  | What are nucleosomes, and how do they contribute to the higher-    | 5   | CO3 |
|      | order structure of chromosomes?                                    |     |     |
| Q 2  | Differentiate between the leading and lagging strands during DNA   | 5   | CO3 |
|      | replication.                                                       |     |     |
| Q 3  | How does histone acetylation affect gene expression?               | 5   | CO2 |
| Q 4  | Compare the transcription process in prokaryotes and eukaryotes,   | 5   | CO2 |
|      | highlighting three major differences.                              |     |     |
|      | Section C                                                          |     |     |
|      | (2Qx15M=30 Marks)                                                  |     |     |
| Q 1  | Discuss the mechanisms of epigenetic regulation, focusing on       | 15  | CO4 |
|      | DNA methylation, histone modifications, and non-coding RNAs.       |     |     |
|      | (10 Marks)                                                         |     |     |
|      | Explain their role in gene expression and their implications in    |     |     |
|      | health and disease. (5 Marks)                                      |     |     |
| Q2   | Describe the complete mechanism of DNA replication in              | 15  | CO1 |
|      | prokaryotes. Include a detailed discussion of the enzymes involved |     |     |
|      | and the steps of initiation, elongation, and termination.          |     |     |
|      | Section D                                                          |     |     |
|      | (2Qx10M=20 Marks)                                                  | _   |     |
| Q 1  | Explain the process of transcription in prokaryotes, including the | 10  | CO3 |
|      | roles of RNA polymerase and promoter sequences. Discuss the        |     |     |
|      | differences between rho-dependent and rho-independent              |     |     |
|      | termination.                                                       |     |     |
| Q2   | Explain the process of genomic imprinting and its molecular basis. | 10  | CO2 |
|      | Discuss how defects in imprinting lead to human disorders such as  |     |     |
|      | Prader-Willi Syndrome (PWS) and Angelman Syndrome (AS).            |     |     |