Name:	WUPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, December 2024

Course: Fermentation TechnologySemester: 3rdProgram: MSC-MICROBIOLOGYDuration: 3 Hours

Course Code: HSMB8002 Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Which microorganism is used to produce penicillin?	1.5	CO5
	a) Saccharomyces cerevisiae		
	b) Aspergillus niger		
	c) Penicillium chrysogenum		
	d) Escherichia coli		
Q 2	Which of the following is a secondary metabolite?	1.5	CO1
	a) Ethanol		
	b) Penicillin		
	c) Glucose		
	d) Lactic acid		
Q 3	The main function of buffers in fermentation media is to	1.5	CO2
	a) Increase agitation		
	b) Maintain pH stability		
	c) Act as a carbon source		
	d) Prevent contamination		
Q 4	The type of fermenter that is commonly used for aerobic	1.5	CO1
	fermentation?		
	a) Airlift fermenter		
	b) Tower fermenter		
	c) Deep jet fermenter		
	d) Packed column		
Q 5	In fed-batch fermentation, nutrients are added:	1.5	CO5
	a) At the beginning		
	b) Continuously during the process		

	c) At intervals during the process		
	d) After the process is complete		
Q 6	Which of the following is an example of a fed-batch culture?	1.5	CO4
	a) Antibiotic production		
	b) Ethanol fermentation		
	c) Single-cell protein production		
	d) All of the above		
Q 7	Which vitamin is produced by microbial fermentation?	1.5	CO5
	a) Vitamin C		
	b) Vitamin B1		
	c) Vitamin D		
	d) Vitamin A		
Q 8	The primary nitrogen source in fermentation media is?	1.5	CO3
	a) Glucose		
	b) Ammonium salts		
	c) Sodium chloride		
	d) Magnesium sulfate		
Q 9	Cryopreservation of animal cells involves freezing cells at	1.5	CO1
	approximately:		
	a) -20°C		
	b) -40°C		
	c) -80°C		
	d) -196°C		
Q 10	Which stage in microbial growth corresponds to the production of	1.5	CO1
	secondary metabolites?		
	a) Lag phase		
	b) Exponential phase		
	c) Stationary phase		
	d) Death phase		
Q 11	Antibiotics are produced during the lag phase of microbial growth.	1.5	CO2
	(True or False)		
Q 12	Mutant strains can improve industrial production of metabolites.	1.5	CO3
	(True or False)		
Q 13	Agitation in a fermenter helps maintain uniform nutrient	1.5	CO4
	distribution. (True or False)		
Q 14	Cryopreservation is used for maintaining microbial germplasm	1.5	CO4
	only. (True or False)		
Q 15	Citric acid fermentation requires high levels of oxygen. (True or	1.5	CO5
	False)		
Q 16	The following is one of the most used fermented cereals	1.5	CO1
	a) Wheat		
	b) Rice		
	c) Bread		
	d) Yoghurt		
Q 17	Impellers are an essential part of the	1.5	CO2

Q 18	There is a high amount of nutrients in growth media. (True or	1.5	CO1
	False)		
Q 19	Alcoholic fermentation is carried by yeast known as		
	a) Lactobacillus		
	b) Bacillus	1.5	CO2
	c) Saccharomyces cerevisiae		
	d) Escherichia coli		
Q 20	The production of substances in industrial microbiology occurs in		
	the sequence:		
	a) fermentation, downstream processing, removal of waste, inoculation.		
	b) inoculation, downstream processing, fermentation, removal of	1.5	CO1
	waste.	1.5	COI
	c) inoculation, fermentation, downstream processing, removal of		
	waste.		
	d) removal of waste, inoculation, fermentation, downstream		
	processing.		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Differentiate primary and secondary metabolites and level them in	_	CO1
	a microbial growth curve.	5	CO1
Q 2	Create generic diagrammatic representation of a fermentation	5	CO2
	process	3	CO2
Q 3	Explain thoughts and definitions of fermentations according to	5	CO1
	field experts.	3	COI
Q 4	Illustrate five major domains of fermentation.	5	CO2
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Evaluate the effectiveness of microbial fermentation in the	15	CO5
	production of citric acid, considering key steps and factors		
	involved. (5 Marks)		
	Assess the significance of other microbial products produced		
	through fermentation, discussing their industrial applications and		
	comparing their impact. (10 Marks)		
Q2	Design an innovative guide outlining the principles of animal cell	15	CO6
	culture, emphasizing the types of culture media and nutritional		
	requirements for optimal cell growth. (10 Marks)		
	Propose creative applications of animal cell culture in		
	biotechnology, highlighting its potential advancements. (5 Marks)		
	Section D		
0.1	(2Qx10M=20 Marks)		
Q 1	Write down major and minor components of a fermentation media. (5 Marks)	10	CO2
	(5 Mulhs)		

	Give five sources of Carbons that are used in industry today. (5			
	Marks)			
Q2	Describe the importance of rDNA in strain improvement. (5			
	<i>Marks</i>) Draw basic schematics of recombinant DNA technology.	10	CO2	
	(5 Marks)			