Name:

Enrolment No:

: III

Semester

UPES

End Semester Examination, December 2024

Course: Microbiology and Microbial Technology Program: B.Tech Biotechnology, BME and Food Technology

Duration : 3 Hours Max. Marks: 100

Course Code: HSMB2040

Instructions: Read all questions carefully

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Which of the following is not a cereal or vegetable or fruit-	1.5	CO1
	based fermented product?		
	(A) Wine (B) Sauerkraut (C) Beer (D) Vinegar		
Q 2	Anaerobic respiration by yeast produces	1.5	CO1
	(A) CO ₂ (B) Wine and Beer (C) Alcohol (D) All of the above		
Q 3	In dough, the starch is digested into sugar through.	1.5	CO1
	(A) Amylase (B) Protease (C) Maltase (D) Lactase		
Q 4	Beer is produced by the fermentation of?	1.5	CO1
	(A) Barley (B) Grape (C) Rice (D) Oranges		
Q 5	Which of the following is NOT a criterion to create a media?	1.5	CO2
	(A) It should be able to produce the maximum yield of product		
	(B) It should be able to produce the maximum concentration		
	of product		
	(C) It should be easily sterilized		
	(D) It should permit the maximum rate of product formation,		
	no matter how costly it is		
Q 6	Which of the following is NOT a criterion for the choice of an	1.5	CO2
	organism?		
	(A) The organism must be genetically stable		
	(B) The organism must be able to produce a high yield of		
	product		
	(C) The optimum temperature for the growth of an organism		
	must be above 50°C		
	(D) The organism must be able to grow in an easily available		
	nutrient medium		

Q 7	Which of the following method is useful for the isolation and detection of organisms having the ability to produce organic acids?	1.5	CO2
	(A) Crowded plate technique		
	(B) Auxanographic technique		
	(C) Enrichment culture technique		
	(D) Indicator dye technique		
Q 8	Which of the following is NOT a cryoprotective agent?	1.5	CO2
	(A) DMSO (B) Glycerol (C) Ethylene glycol (D) Paraffin wax		
Q 9	Which of the following sensor is used to measure the	1.5	CO3
	acid/alkali addition?		
	(A) pH (B) Redox (C) Temperature (D) Oxygen		
Q 10	The agitator is required to ?	1.5	CO3
	(A) Provide air (B) Mixing objectives (C) Purify the product		
	(D) Sterilize the media		
Q 11	A period during which the growth rate of cells gradually	1.5	CO3
	increases is known as ?		
	(A) Lag phase (B) Log phase (C) Stationary phase		
	(D) Death phase		
Q 12	The Fed-batch fermenter is a/an culture system	1.5	CO3
	(A) Open (B) Closed (C) Isolated (D) Semi-closed		
Q 13	The fermentation of milk to form cheese is done by	1.5	CO4
	bacterium species?		
	(A) Saccharomyces spp. (B) Lactobacillus spp.		
	(C) Aspergillus spp. (D) Penicillium spp.		
Q 14	Citric acid is used in the manufacture of jams and jellies	1.5	CO4
	(A) True (B) False		
Q 15	Which of the following fungi produces alpha amylase?	1.5	CO4
	(A) Bacillus subtilis (B) Penicillium (C) Bacillus diastaticus		
	(D) Bacillus megaterium		
Q 16	Which physical method of microbial control uses moist heat	1.5	CO4
	under pressure?		
	(A) Pasteurization (B) Autoclaving		
	(C) Hot air sterilization (D) Incineration		
Q 17	Which of the following is NOT a benefit of using sterilization	1.5	CO5
	in food microbiology?		
	(A) Increased shelf life (B) Preservation of nutritional value		
	(C) Elimination of harmful microorganisms		
	(D) Increase in food texture and taste		

Q 18	Which of the following is a key difference between aerobic and	1.5	CO5
	anaerobic respiration?		
	(A) Aerobic respiration occurs in the cytoplasm; anaerobic		
	respiration occurs in the mitochondria		
	(B) Aerobic respiration requires oxygen; anaerobic		
	respiration does not		
	(C) Aerobic respiration produces less energy than anaerobic		
	respiration		
	(D) Aerobic respiration produces lactic acid as a byproduct		
Q 19	What happens if the fermentation temperature is too high for	1.5	CO5
	the microbial culture?		
	(A) The fermentation rate increases indefinitely		
	(B) Microbial cells die or become inactive		
	(C) The pH of the medium automatically adjusts		
	(D) The product yield improves		
Q 20	Which of the following is a disadvantage of batch fermentation	1.5	CO5
	compared to continuous fermentation?		
	(A) High risk of contamination		
	(B) Reduced product quality		
	(C) Lower overall productivity over time		
	(D) Greater need for sterile conditions		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	List any five components of the fermenter and their function.	5	CO1
Q 2	Describe the stages involved in the selection of industrially	5	CO2
	important microbes.		CO2
Q 3	Distinguish between oxygen uptake rate (OUR) and oxygen	5	
1	transfer rate (OTR) and explain the formula to measure OUR		CO3
	and OTR.		
Q 4	Illustrate the design of a solid-state fermenter and list the solid	5	G02
	substrates used.		CO3
	Section C		
	(2Qx15M=30 Marks)		
Q 1	You own a pharmaceutical industry and would like to produce	15	CO2
	penicillin antibiotic.		
	A. How do you screen, select and improve the microbial		
	strain for the production of penicillin in your industry?		
	(5 marks)		

	B. Formulate a medium (carbon and nitrogen source) out				
	of waste product to produce the antibiotic. (5 marks)				
	C. Which fermenter design you would employ to produce				
	penicillin and explain why? (5 marks)				
Q 2	A nutraceutical company would like to produce single cell	15	CO5		
	protein (SCP) products.				
	A. What organisms would you recommend for SCP and				
	justify your suggestion? (5 marks)				
	B. Would you recommend aerobic or anerobic				
	fermentation and explain why? (5 marks)				
	C. Which fermenter (Batch, Fed-batch or continuous)				
	would you suggest for the SCP production and justify?				
	(5 marks)				
Section D					
(2Qx10M=20 Marks)					
Q 1	Discuss strain improvement and its significance. Write any	10	CO2		
	two different methods used for strain improvement with an				
	illustration.				
Q 2	Write the beer production process and the detailed	10	CO4		
	fermentation steps with an illustration.				