Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Antimicrobial Drug Resistance and Drug Development

Semester:3rd

Program: MSC-MICROBIOLOGY
Course Code: HSMB8016P
Duration: 3 Hours
Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Amphotericin B is a broad-spectrum antifungal drug that works	1.5	CO1
	by binding to ergosterol in the fungal cell membrane. (True/False)		
Q 2	Metronidazole is effective only against aerobic bacteria.	1.5	CO2
	(True/False)		
Q 3	The mechanism of action of macrolides involves inhibiting	1.5	CO2
	bacterial RNA synthesis. (True/False)		
Q 4	Antiretroviral drugs are designed to prevent the replication of HIV	1.5	CO2
	by targeting its reverse transcriptase, integrase, and protease		
	enzymes. (True/False)		
Q 5	Ribavirin is primarily used as an antiviral drug that inhibits DNA	1.5	CO2
	synthesis. (True/False)		
Q 6	Vancomycin is effective against Gram-negative bacteria.	1.5	CO1
	(True/False)		
Q 7	The development of antimicrobial resistance is primarily due to the	1.5	CO1
	overuse of antibiotics in humans, not in agriculture. (True/False)		
Q 8	Which of the following drugs works by inhibiting fungal cell	1.5	CO3
	membrane synthesis?		
	a) Amphotericin B		
	b) Metronidazole		
	c) Vancomycin		
	d) Ribavirin		
Q 9	Which of the following is a key characteristic of macrolides?	1.5	CO3
	a) They bind to bacterial ribosomes and inhibit protein synthesis		
	b) They interfere with DNA replication		
	c) They block folic acid synthesis in bacteria		
	d) They inhibit viral RNA replication		
Q 10	Which of the following drugs is commonly used to treat HIV	1.5	CO3
	infections?		

	a) Ribavirin		
	b) Trifluridine		
	c) Zidovudine		
	d) Metronidazole		
Q 11	Penicillin resistance in bacteria is primarily caused by:	1.5	CO4
ŲII	a) The production of beta-lactamase enzymes	1.0	04
	b) Alteration of the bacterial ribosome		
	c) Changes in the bacterial DNA polymerase		
	d) Mutation of bacterial cell membrane proteins		
Q 12	-	1.5	CO2
Q 12	Echinocandins inhibit which of the following in fungal cells?	1.5	CO2
	a) Cell membrane synthesis		
	b) Protein synthesis		
	c) Cell wall synthesis		
0.12	d) DNA replication		604
Q 13	What is the difference between Metronidazole and Tinidazole in	1.5	CO4
	terms of their mechanism of action?		
Q 14	Which class of drugs inhibits bacterial cell wall synthesis by	1.5	CO2
	binding to the fungal enzyme beta-glucan synthase?		
	a) Penicillins		
	b) Echinocandins		
	c) Tetracyclines		
	d) Quinolones		
Q 15	Which of the following is a common mechanism of antibiotic	1.5	CO2
	resistance in bacteria?		
	a) Protein synthesis inhibition		
	b) Efflux pumps		
	c) DNA synthesis		
	d) RNA interference		
Q 16	The primary mechanism of action for metronidazole is to:	1.5	CO4
	a) Disrupt DNA synthesis		
	b) Inhibit protein synthesis		
	c) Block cell wall synthesis		
	d) Inhibit RNA synthesis		
Q 17	What is the function of beta-lactamase in bacterial cells?	1.5	CO3
	a) Inhibits DNA synthesis		
	b) Breaks down the antibiotic		
	c) Enhances protein synthesis		
	d) Promotes cell wall synthesis		
Q 18	Which of the following drugs is an RNA synthesis inhibitor?	1.5	CO2
~	a) Tinidazole		
	b) Ribavirin		
	-/		
	c) Echinocandin		
	c) Echinocandin d) Amphotericin B		

	a) Trifluridine		
	b) Amphotericin B		
	c) Zidovudine		
	d) Metronidazole		
Q 20	Macrolides work by targeting which part of the bacterial cell? a)	1.5	CO1
	Cell wall		
	b) Ribosomes		
	c) DNA		
	d) Cell membrane		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	What is the role of interferons in treating viral infections? (2.5	5	CO2
	marks)		
	Discuss how they enhance the immune system's ability to fight viruses. (2.5 marks)		
Q 2	Explain the molecular basis of penicillin resistance. (2.5 marks)	5	CO3
	How does beta-lactamase contribute to this resistance? (2.5 marks)		
Q 3	What are the major mechanisms by which bacteria develop	5	CO2
	resistance to macrolide antibiotics?		
Q 4	What is the role of interferons in treating viral infections? (2.5	5	CO2
	marks)		
	Discuss how they enhance the immune system's ability to fight		
	viruses. (2.5 marks)		
	Section C (2Qx15M=30 Marks)		
Q 1	Discuss the molecular mechanisms behind drug resistance to	15	CO2
	common antimicrobial drugs like penicillin, vancomycin, and	10	602
	macrolides. (10 marks)		
	How can these resistance mechanisms be overcome in clinical		
	settings? (5 marks)		
)2	Provide an overview of the development and design of new	15	CO3
_	antimicrobial drugs. (5 marks)		
	Discuss current methods such as enzyme targeting, receptor		
	targeting, and computer-aided drug design. How do these methods		
	contribute to overcoming antimicrobial resistance? (10 marks)		
	Section D		<u>'</u>
	(2Qx10M=20 Marks)		
Q 1	Explain the mechanism of action of key antiviral drugs like	10	CO2
	Ribavirin and Trifluridine. (5 marks)		
	How do these drugs interfere with viral replication, and what		
	are their clinical applications and limitations? (5 marks)		

Q2	Discuss the global challenges posed by antimicrobial	10	CO3
	resistance (AMR). (5 marks)		
	Describe the impact of AMR on public health, agriculture,		
	and the environment. What strategies can be employed to		
	curb the rise of antimicrobial resistance? (5 marks)		