Name:

Enrolment No:

UPES

End Sem examination, December 2024

Course: Bioanalytical Techniques Semester: V
Program: B.Tech. Biotechnology Duration: 3 Hours
Course Code: HSBT3004 Max. Marks: 100

Instructions:

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	The Svedberg unit (S) is used to measure:	1.5	CO1
	a) Centrifugal speed		
	b) Sedimentation rate		
	c) Density of a solution		
	d) Centrifuge rotor radius		
Q 2	What is the principle behind density gradient	1.5	CO1
	centrifugation?		
	a) Particles are separated based on electrical charge		
	b) Particles are separated based on their size only		
	c) Particles are separated by moving through a gradient		
	of increasing density		
	d) Particles are separated by light absorption		
Q 3	Recall the function of beam splitter in dual beam	1.5	CO1
	spectrophotometer.		
Q 4	State the function of monochromator.	1.5	CO1
Q 5	Define singlet state.	1.5	CO1
Q 6	Recall The name of any fluorophore and quencher.	1.5	CO1
Q 7	Beer's law states that absorbance is directly proportional	1.5	CO1
	to the thickness of the absorbing material (True/False).		
Q 8	Energy (E) is directly proportional to the wavelength (λ)	1.5	CO1
	(True/False). Explain		
Q 9	The shift of an absorption maximum to a longer	1.5	CO1
	wavelength is called hypsochromic or red shift		
	(True/False)		
Q 10	In affinity chromatography method, molecule of interest	1.5	CO1
	is separated on the basis of specific biological interactions		
	(True/False).		

Q 11	Identify the type of chromatography and label A, B, and C:	1.5	CO2
	Î P		
Q 12	List the names of different types of rotors.	1.5	CO2
Q 13	The stationary phase in gel filtration chromatography	1.5	CO2
	consists of:		
	a) Porous beads		
	b) Solid glass particles		
	c) Charged ions		
	d) Magnetic particles		
Q 14	Which of the following amino acid residue is modified	1.5	CO2
	during ICAT analysis?		
	a) Tyrosine b) Glycine c) Serine d) Cysteine		
Q 15	Which chromatographic technique is employed to purify	1.5	CO2
	labeled peptide fragments:		
	a) Cation exchange b) Gel filtration c) Hydrophobic		
	interaction chromatography d) Affinity chromatography		
Q 16	The void volume (V ₀) in gel filtration chromatography	1.5	CO2
	refers to:		
	a) The volume of solvent outside the pores of the beads		
	b) The total volume of the column		
	c) The volume occupied by the gel beads		
	d) The volume of solvent inside the pores of the beads		
Q 17	Enlist different methods of ionization used in Mass	1.5	CO3
	spectrometry.		
Q 18	Define the term molecular ion.	1.5	CO3
Q 19	During affinity chromatography, how are specifically	1.5	CO3
	bound molecules typically eluted from the column?		
	a) By changing the temperature		
	b) By increasing the ionic strength or altering the pH		
	c) By using size-exclusion techniques		
	d) By evaporating the solvent		
Q 20	What is the primary principle behind fluorescence	1.5	CO3
	spectroscopy?		
	a) Absorption of light and heat emission		
	b) Absorption of light and emission of light at a longer		
	wavelength		

	c) Light scattering by molecules		
	d) Change in molecular mass upon excitation		
	Section B (4Qx5M=20 Marks)		
Q		5	СО
Q1	Describe the principle of gel filtration chromatography.	5	CO1
Q2	Differentiate between internal conversion (IC) and intersystem crossing (ISC)	5	CO1
Q3	Discuss the principle of electron spray ionization (ESI).	5	CO2
Q4	Differentiate between differential and density gradient centrifugation.	5	CO3
	Section C		
	(2Qx15M=30 Marks)		
Q			СО
Q1	Discuss the principle of Ion exchange chromatography. Differentiate between cation exchange and anion exchange chromatography. A protein with a pI of 5 and if it is placed in a buffer solution of pH-7 which type of ion exchanger you will use to purify the protein. Explain	5+5+5	CO3
Q2	(a) Define enthalpy and entropy of a reaction. (b) Explain the principle of SPR (with diagram). (c)What is SPR sensorgram (explain with figure)	5+5+5	CO4
	Section D		
	(2Qx10M=20 Marks)		
Q			
Q1	(a) Describe the principle of isothermal calorimetry (with diagram) and (b) its various applications.	7+3	CO2
Q2	Describe fluorescence energy transfer (FRET). Discuss how FRET can be used for protein-protein or protein-RNA interactions. Or	5+5	CO4
	Describe the principle of mass spectroscopy (with diagram). Discuss the MALDI-TOF in detail for protein identification.		