Name:	7// 11D=C
Enrolment No:	WUPES

UPES

End Semester Examination, Dec 2024

Course: Environmental Microbiology and Microbial Ecology

Semester: V

Program: Integrated B.MSc Microbiology Time : 03 hrs.
Course Code: HSMB3016 Max. Marks: 100

Instructions: Answer all questions. Students are allowed to use a scientific calculator.

Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)

Sl	Questions	Marks	CO's	
Q1	State the difference between symbiosis and syntrophy with an example.	1.5	CO2	
Q2	Periodic changes in Earth's orbital parameters that cause major changes in the	1.5	CO1	
	planet's climate are called the cycles.			
Q3	Mention names of BTEX compounds.	1.5	CO1	
Q4	Define Mixed layer Depth.	1.5	CO1	
Q5	State how dechlorination is done from water samples before BOD analysis.	1.5	CO3	
Q6	State the difference between gray water and black water.	1.5	CO1	
Q7	Comment on the difference between zone of illuviation and eluviation.	1.5	CO1	
Q8	Define Thermakarst lakes.	1.5	CO1	
Q9	Mention the reagents used in Winkler's A during estimation of dissolved Oxygen.	1.5	CO3	
Q10	Define Primary Productivity.	1.5	CO1	
Q11	Define valorization and give an example.	1.5	CO3	
Q12	State the utility of SHARON process.	1.5	CO3	
Q13	Define Nitrogen fixation.	1.5	CO1	
Q14	State the difference between net and gross primary-productivity.	1.5	CO1	
Q15	Mention examples of autoinducers involved in Quorum Sensing.	1.5	CO2	
Q16	Mention the red-field ratio.	1.5	CO1	
Q17	State the purpose of CTD profiler.	1.5	CO1	
Q18	Mention typical habitat of Magnetotactic bacteria.	1.5	CO2	
Q19	State the importance of bioaugmentation with an example.	1.5	CO2	
Q20	Mention an example of negative symbiotic relationship.	1.5	CO2	
Section B				
	(4Qx5M=20 Marks)			
Q1	(a) Discuss the differences between BOD and COD and their applications to	5	CO4	
	estimate water quality. (3 Marks).			
	(b) State why COD value is greater than BOD value. (2 Marks)			
Q2	Explain the concept and implications of Microbial loop with help of a labelled	5	CO2	
	diagram.			
Q3	(a) Define Nitrification. (1 Mark)	5	CO1	
	(b) Explain the ecophsyiology of nitrifiers and their role in N cycling.			
Q4	Discuss how microbes may be used for bioremediation of Uranium.	5	CO1	

	Section C		
	(2Qx15M=30 Marks)		
Q1	 (a) Describe the key components of waste-water treatment plant which ensures effective treatment before discharge. (05 Marks) (b) Describe the role of aeration in wastewater treatment plant. (05 Marks) (c) Discuss the role of microbes in biological treatment process of wastewater. (05 Marks). 	15	CO3
Q2	 (a) Total prokaryotic cells can be estimated using epifluorescent microscopy from any water sample. Explain the principle and procedure of using fluorescent stains to estimate total bacterial counts from a water sample. (05 Marks). (b) From the following information calculate the total number of prokaryotic cells 	15	CO4
	in a given river water sample: (05 Marks) Volume Filtered: 5 ml		
	Diameter of filter: 25 mm		
	Dimensions of Ocular micrometer: 100 uM x 100 uM		
	Counts per field of view (FOV):		
	FOV 1 : 156 FOV 4: 189		
	FOV 2 : 162 FOV 5: 200		
	FOV 3 : 165 FOV 6: 175		
	Section D		
	(2Qx10M=20 Marks)		
Q1	Describe the formation of hydrothermal vents and microbial interactions that supports chemosynthetic food chains in vent environments.	10	CO3
Q2	Discuss various factors that influence formation of Harmful Algal Blooms in coastal and open oceans.	10	CO2