| Name: | 7// 11D=C | |---------------|------------------| | Enrolment No: | WUPES | ## **UPES** ## **End Semester Examination, Dec 2024** Course: Environmental Microbiology and Microbial Ecology Semester: V Program: Integrated B.MSc Microbiology Time : 03 hrs. Course Code: HSMB3016 Max. Marks: 100 Instructions: Answer all questions. Students are allowed to use a scientific calculator. ## Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks) | Sl | Questions | Marks | CO's | | |-----------|---|-------|------|--| | Q1 | State the difference between symbiosis and syntrophy with an example. | 1.5 | CO2 | | | Q2 | Periodic changes in Earth's orbital parameters that cause major changes in the | 1.5 | CO1 | | | | planet's climate are called the cycles. | | | | | Q3 | Mention names of BTEX compounds. | 1.5 | CO1 | | | Q4 | Define Mixed layer Depth. | 1.5 | CO1 | | | Q5 | State how dechlorination is done from water samples before BOD analysis. | 1.5 | CO3 | | | Q6 | State the difference between gray water and black water. | 1.5 | CO1 | | | Q7 | Comment on the difference between zone of illuviation and eluviation. | 1.5 | CO1 | | | Q8 | Define Thermakarst lakes. | 1.5 | CO1 | | | Q9 | Mention the reagents used in Winkler's A during estimation of dissolved Oxygen. | 1.5 | CO3 | | | Q10 | Define Primary Productivity. | 1.5 | CO1 | | | Q11 | Define valorization and give an example. | 1.5 | CO3 | | | Q12 | State the utility of SHARON process. | 1.5 | CO3 | | | Q13 | Define Nitrogen fixation. | 1.5 | CO1 | | | Q14 | State the difference between net and gross primary-productivity. | 1.5 | CO1 | | | Q15 | Mention examples of autoinducers involved in Quorum Sensing. | 1.5 | CO2 | | | Q16 | Mention the red-field ratio. | 1.5 | CO1 | | | Q17 | State the purpose of CTD profiler. | 1.5 | CO1 | | | Q18 | Mention typical habitat of Magnetotactic bacteria. | 1.5 | CO2 | | | Q19 | State the importance of bioaugmentation with an example. | 1.5 | CO2 | | | Q20 | Mention an example of negative symbiotic relationship. | 1.5 | CO2 | | | Section B | | | | | | | (4Qx5M=20 Marks) | | | | | Q1 | (a) Discuss the differences between BOD and COD and their applications to | 5 | CO4 | | | | estimate water quality. (3 Marks). | | | | | | (b) State why COD value is greater than BOD value. (2 Marks) | | | | | Q2 | Explain the concept and implications of Microbial loop with help of a labelled | 5 | CO2 | | | | diagram. | | | | | Q3 | (a) Define Nitrification. (1 Mark) | 5 | CO1 | | | | (b) Explain the ecophsyiology of nitrifiers and their role in N cycling. | | | | | Q4 | Discuss how microbes may be used for bioremediation of Uranium. | 5 | CO1 | | | | Section C | | | |----|---|----|-----| | | (2Qx15M=30 Marks) | | | | Q1 | (a) Describe the key components of waste-water treatment plant which ensures effective treatment before discharge. (05 Marks) (b) Describe the role of aeration in wastewater treatment plant. (05 Marks) (c) Discuss the role of microbes in biological treatment process of wastewater. (05 Marks). | 15 | CO3 | | Q2 | (a) Total prokaryotic cells can be estimated using epifluorescent microscopy from any water sample. Explain the principle and procedure of using fluorescent stains to estimate total bacterial counts from a water sample. (05 Marks). (b) From the following information calculate the total number of prokaryotic cells | 15 | CO4 | | | in a given river water sample: (05 Marks) Volume Filtered: 5 ml | | | | | Diameter of filter: 25 mm | | | | | Dimensions of Ocular micrometer: 100 uM x 100 uM | | | | | Counts per field of view (FOV): | | | | | FOV 1 : 156 FOV 4: 189 | | | | | FOV 2 : 162 FOV 5: 200 | | | | | FOV 3 : 165 FOV 6: 175 | | | | | Section D | | | | | (2Qx10M=20 Marks) | | | | Q1 | Describe the formation of hydrothermal vents and microbial interactions that supports chemosynthetic food chains in vent environments. | 10 | CO3 | | Q2 | Discuss various factors that influence formation of Harmful Algal Blooms in coastal and open oceans. | 10 | CO2 |