Name:	WUPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, December 2024

Course: Sports Nutrition and management Semester: V
Program: Integrated BSc MSc Nutrition and Dietetics Duration: 3 Hours
Course Code: HSND3017 Max. Marks: 100

Instructions: Read all the questions carefully.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	What is the main form of energy that cells use?	1.5	CO1
Q 2	The predominant fuel for a 2-hour marathon is .	1.5	CO4
) protein		
) fat		
) carbohydrate		
) water		
Q 3	How do fatty acids enter the citric acid cycle?	1.5	CO2
Q 4	Glycolysis begins with and ends with	1.5	CO1
	a) pyruvate; water		
	b) pyruvate; glucose		
	c) glucose; pyruvate		
	d) pyruvate; acetyl-CoA		
Q 5	State one difference between aerobic and anerobic metabolism of glucose.	1.5	CO3
Q 6	What is the role of coenzymes in electron transport chain?	1.5	CO2
Q 7	Is it possible for the body to convert fat into glucose? Why or why not?	1.5	CO2
Q 8	To use amino acids as a fuel, what must happen to the nitrogen attached	1.5	CO2
	to the amino acid?		
Q 9	When muscle tissue is exercising under anaerobic conditions, the	1.5	CO3
	production of is important because it assures a continuous		
	supply of NAD.		
	a) glucose-6-phosphate		
	b) pyruvate		
	c) lactic acid		
0.10	d) glycogen		6.0.2
Q 10	Why is creatine so important for fueling high-intensity, short-duration	1.5	CO3
0.44	exercise?		604
Q 11	What is an ergogenic aid?	1.5	CO2
Q 12	What do you understand by the term METs?	1.5	CO2

Q 13	During periods of starvation, the body uses protein as a fuel source for the	1.5	CO2
	brain and central nervous system in a pathway called gluconeogenesis.		
	a. true		
	b. false		
Q 14	Which of the following athletes would <i>not</i> benefit from carbohydrate	1.5	CO4
	loading?		
	a) marathon runner		
	b) long-distance cyclist		
	c) triathlete		
	d) football player		
Q 15	Hyponatremia is a condition that can occur when athletes drink too much	1.5	CO3
	a) alcohol		
	b) water		
	c) sports drinks		
	d) milk		
Q 16	What is the primary nutrient that should be consumed in the pre-exercise	1.5	CO2
	meal?		
Q 17	How should athletes determine if they are dehydrated?	1.5	CO3
Q 18	Identify one key difference between the intensity of aerobic and	1.5	CO3
	resistance exercises, providing an example for each.		
Q 19	State one difference between Type I and Type II muscle fibers.	1.5	CO3
Q 20	Match the definitions on the right with the terms on the left.	1.5	CO4
	a. beta-oxidation 1. breakdown of glucose to pyruvate		
	b. ketosis 2. breakdown of fat to 2-carbon units called acetyl-CoA		
	c. electron transport chain 3. synthesis of glucose from non-CHO sources		
	d. gluconeogenesis 4. formation of excess ketone bodies		
	e. glycolysis 5. electrons transferred back and forth to make ATP		
	Section B (4Qx5M=20 Marks)		'
Q 1	Explain the benefits of physical activity.	5	CO1
Q 2	Describe the fluid needs of athletes and how to avoid dehydration and	5	CO2
~ -	hyponatremia.		002
Q3	a. What is progressive overload principle? (1.5 marks)	5	CO3
Q S	b. Discuss the conditions that must exist in the body to promote the		
	formation of ketones. (3.5 marks)		
Q 4	What adaptations occur that help slow the breakdown of lean body mass	5	CO4
	during prolonged fasting?		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	a. Discuss the relationship between exercise intensity and blood	15	CO4
	lactate levels in both untrained individuals and endurance		
	athletes. (7.5 marks)		

	b. How do aerobic training adaptations alter the lactate threshold, in		
	endurance athletes and the significance of the Cori cycle in		
	energy metabolism? (7.5 marks)		
Q 2	a. Discuss the relationship between oxygen consumption during	15	CO3
	exercise, oxygen deficit, and recovery oxygen consumption		
	(EPOC). (7.5 marks)		
	b. How does the intensity and duration of exercise influence these		
	factors, and what are the differences in recovery between trained		
	and untrained individuals? (7.5 marks)		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Describe what happens to excess amounts of ingested fat, protein, and	10	CO3
	carbohydrates.		
Q 2	a. Describe the physiological adaptations of the heart and lungs that	10	CO4
	occur during cardiorespiratory conditioning. (5 marks)		
	b. Discuss how the body utilizes fat for energy, based on the duration		
	and intensity of physical activity and the role of training in enhancing		
	fat utilization. (5 marks)		
	Tat utilization. (5 marks)		