Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Biosensors and Diagnostics

Semester:5th

Program:B.Tech Biomedical EngineeringDuration: 3 HoursCourse Code:HSBE3002Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	A nonpolarizable electrode is ideal for applications where	1.5	CO1
	stable long-term measurements are required. (True/False)		
Q 2	Enzyme electrodes are used for the noninvasive measurement	1.5	CO2
	of parameters like glucose and oxygen. (True/False)		
Q 3	Microelectrodes are primarily used for measuring large-scale	1.5	CO2
	bioelectric events such as ECG and EEG. (True/False)		
Q 4	Electrode polarization is a phenomenon where a voltage	1.5	CO2
	develops at the electrode-electrolyte interface, affecting the		
	measurement accuracy. (True/False)		
Q 5	Which of the following best describes the purpose of the	1.5	CO2
	reference electrode in an electrochemical measurement setup?		
	a) To measure the potential difference between two points		
	b) To maintain a stable potential for accurate measurement		
	c) To provide a signal for amplifying electrical activity		
	d) To introduce a current into the system		
Q 6	In which of the following cases is a blood glucose sensor	1.5	CO3
	typically used? a) Measurement of blood oxygen levels		
	b) Monitoring pH in blood		
	c) Monitoring blood glucose levels in diabetic patients		
	d) Measurement of CO2 tension in blood		

Q 7	Which of the following is the main advantage of using	1.5	CO4
	microelectrodes over conventional electrodes? a) They have		
	higher impedance		
	b) They are suitable for high precision measurements in small		
	tissues		
	c) They require more invasive procedures		
	d) They are less affected by motion artifacts		
Q 8	Which of the following electrodes is most commonly used for	1.5	CO3
	the measurement of the electrical activity of the brain (EEG)?		
	a) Microelectrode		
	b) Body-surface recording electrode		
	c) Needle electrode		
	d) Reference electrode		
Q 9	What is the primary function of a reference electrode in	1.5	CO4
	electrochemical measurements?		
	a) To provide a stable potential		
	b) To measure the ion concentration		
	c) To act as a measuring electrode		
	d) To record the voltage across tissues		
Q 10	Which type of electrode is most suitable for measuring the pO2	1.5	CO1
	level in blood?		
	a) Ion-Selective Field-Effect Transistor (ISFET)		
	b) Blood glucose sensors		
	c) pO2 electrodes		
	d) Microelectrodes		
Q 11	Define accuracy of a sensor.	1.5	CO1
Q 12	List two applications of fiber optic sensors.	1.5	CO1
Q 13	How do gamma rays differ from alpha and beta particles?	1.5	CO1
	a) They are heavier than alpha and beta particles		
	b) They carry both energy and mass		
	c) They are pure energy without mass		
	d) They are charged particles		
Q 14	Which of the following best describes the penetrating power of	1.5	CO1
	gamma rays?		
	a) They can be stopped by skin and clothing		
	b) They are absorbed easily by the human body		
	c) They have the highest penetration power		
	d) They cannot penetrate any solid barriers		
Q 15	List how many sensors or senses do humans have?	1.5	CO1
Q 16	Give examples of sensors in robots that are similar to at least	1.5	CO1
€	two human senses		
Q 17	State different types of taste can your tongue detect.	1.5	CO3
Q 18	Briefly explain why most students had difficulty determining	1.5	CO3

Q 19	What is SU-8 primarily used for in microfabrication?	1.5	CO2
	a) Conductive material for electronic circuits		
	b) A photoresist for patterning microstructures		
	c) A substrate for growing cells		
	d) A solvent for dissolving polymers		
Q 20	What type of polymer is SU-8?	1.5	CO2
	a) Epoxy-based		
	b) Polyester-based		
	c) Polyimide-based		
	d) Polyethylene-based		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	What are the applications of Ion-Selective Field-Effect	5	CO1
_	Transistors (ISFET) in biomedical instrumentation? (3.5		
	marks)		
	Provide examples. (1.5 marks)		
Q 2	How do electrochemical sensors function? (2.5 marks)	5	CO3
	Discuss their role in measuring parameters such as blood pH		
	and oxygen levels. (2.5 marks)		
Q 3	Describe the mechanism of avalanche multiplication in gas	5	CO2
	detector.		
Q 4	Discuss physical fiber optic sensor with a suitable	5	CO3
	example.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Explain the principles of electrode-electrolyte interactions and	15	CO3
	their impact on biopotential recording accuracy. (10 marks)		
	Discuss the differences between polarizable and		
	nonpolarizable electrodes in terms of their performance and		
	applications. (5 marks)		
Q2	Explain the principle of gaseous ionization detector (with	15	CO4
	diagram) (5 marks). Discuss the basic characteristics of gas		
	ionization chamber (4 marks). Label A, B, C, D, E and F in the		
	below given diagram (6 marks):		

