Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Fermentation Technology

Program: Integrated (B.Sc.-M.Sc.) Microbiology

Course Code: HSMB3015

Semester : V

Duration : 3 Hours

Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Fermentation technology combines which disciplines?	1.5	CO1
	a) Microbiology and chemistry		
	b) Microbiology, biochemistry, and biochemical engineering		
	c) Biophysics and microbiology		
	d) Chemistry and biophysics		
Q 2	What is fermentation in biological terms?	1.5	CO1
	a) Aerobic energy production		
	b) Anaerobic breakdown of glucose		
	c) Cellular respiration using oxygen		
	d) DNA synthesis in prokaryotes		
Q 3	Modern fermentation technology includes the production of:	1.5	CO1
	a) Primary metabolites only		
	b) Secondary metabolites only		
	c) Primary and secondary metabolites		
	d) None of the above		
9 4	Solid-state fermentation was first developed for:	1.5	CO1
	a) Antibiotic production		
	b) Alcohol production		
	c) Enzyme production		
	d) Vaccine production		
Q 5	Which of these substrates is used in solid-state fermentation?	1.5	CO1
	a) Molasses		
	b) Rice bran		
	c) Glucose solution		
	d) Ethanol		
9 6	Why is genetic stability important in microbial culture selection?	1.5	CO2
	a) To minimize product variability		
	b) To increase pathogen resistance		
	c) To optimize growth rate		

	d) To reduce contamination risks		
Q 7	Which of these industries heavily relies on fermentation?	1.5	CO2
,	a) Textile	1.0	002
	b) Pharmaceutical		
	c) Automotive		
	d) Mining		
Q 8	The quality of raw materials affects fermentation primarily by	1.5	CO2
	influencing:	1.0	002
	a) Microbial strain selection		
	b) Yield and efficiency of the fermentation process		
	c) Reactor design		
	d) Pretreatment method choice		
Q 9	What is the role of cyclic AMP (cAMP) in carbon catabolite	1.5	CO2
	repression?		
	a) It represses transcription of genes		
	b) It activates catabolic operons in low glucose conditions		
	c) It inhibits enzyme activity		
	d) It degrades unwanted proteins		
Q 10	The Crabtree effect is observed in:	1.5	CO2
	a) Aerobic conditions with low glucose		
	b) Anaerobic conditions		
	c) Aerobic conditions with high glucose concentrations		
	d) Anaerobic conditions with low oxygen		
Q 11	Which of the following is NOT a commonly used method for	1.5	CO3
	isolating mutants?		
	a) UV irradiation		
	b) Chemical mutagenesis		
	c) Serial dilution		
	d) Transposon mutagenesis		
Q 12	A commonly used chemical mutagen for inducing mutations is:	1.5	CO3
	a) Acridine orange		
	b) Ethyl methanesulfonate (EMS)		
	c) Sodium hydroxide		
	d) Ethanol		
Q 13	Which medium is commonly used for preserving bacterial mutants	1.5	CO3
	in glycerol stocks?		
	a) Minimal medium		
	b) Nutrient-rich medium		
	c) Luria-Bertani (LB) medium		
	d) Synthetic defined medium		
Q 14	UV irradiation primarily induces mutations by causing:	1.5	CO3
	a) Double-stranded DNA breaks		
	b) Formation of thymine dimers		
	c) Deamination of cytosine		

	d) Incorporation of base analogs		
Q 15	Which of the following fermentation parameters is most critical for	1.5	CO3
Q 13	the production of citric acid using Aspergillus niger?	1.5	005
	a) High pH		
	b) High oxygen levels		
	c) Low temperature		
	d) Acidic pH		
Q 16	Which microorganism is primarily used in the industrial	1.5	CO4
Q 10	production of lysine?	1.3	C04
	a) Aspergillus niger		
	b) Corynebacterium glutamicum		
	c) Penicillium chrysogenum		
	d) Saccharomyces cerevisiae		
Q 17	Which enzyme is produced industrially by fermentation using	1.5	CO4
Q 17	Bacillus subtilis and used in detergent formulation?	1.3	CO4
	a) Lipases		
	b) Proteases		
	c) Amylases		
	d) Cellulases		
Q 18	What type of microbial fermentation is most commonly used for	1.5	CO4
Q 18	the production of amino acids like lysine?	1.3	CO4
	a) Solid-state fermentation		
	b) Submerged fermentation		
	c) Both		
	d) Neither		
Q 19	Which of the following is not a scale-up process?	1.5	CO4
Q 19	a) Laboratory to pilot-scale	1.3	CO4
	b) Pilot-scale to industrial-scale		
	c) Industrial to pilot-scale		
	d) Laboratory to industrial-scale		
Q 20	Which of the following is not a criterion for the choice of the	1.5	CO4
Q 20	recovery process?	1.5	004
	a) Location of the product		
	b) Price of the product		
	c) Use of the product		
	d) Source of organism		
	Section B: Short-Answer Questions		
	(4Qx5M=20 Marks)		
	(4QASM=20 Mai R5)		
Q 1	Discuss the historical significance of fermentation technology and	5	CO1
	its evolution into a modern industry.		
Q 2	Explain the importance of pretreatment in raw material processing	5	CO2
-	for microbial fermentation. Provide examples of commonly used		
	pretreatment methods.		

Q 3	With the help of a workflow diagram, explain the procedure for	5	CO3
	isolating feedback inhibition-resistant mutants.		
Q 4	Briefly explain the process and key parameters for the industrial	5	CO4
	manufacture of β -lactam antibiotics		
	Section C: Case study		
	(2Qx15M=30 Marks)		
Q 1	A biotech company, BioFerma Ltd., is exploring advancements in	15 marks	CO2
	fermentation technology to enhance the production of	(3 marks	
	biopharmaceuticals and industrial enzymes. They aim to address	each)	
	challenges such as low yield, high production costs, and		
	environmental sustainability.		
	The company recently adopted cutting-edge strategies, including		
	the use of genetically engineered microorganisms (GEMs),		
	continuous fermentation processes, and integrated bioprocessing		
	systems. They also experimented with CRISPR-Cas9 technology		
	to enhance microbial strains for high-yield enzyme production and		
	implemented artificial intelligence (AI) tools for real-time		
	monitoring of fermentation parameters. Their primary focus is on		
	producing insulin, protease, and amylase for pharmaceutical and		
	industrial applications.		
	Based on this case study, answer the following questions:		
	A) Describe the benefits of using genetically engineered		
	microorganisms (GEMs) in fermentation processes? Provide		
	two examples of GEMs used in industry.		
	B) How does continuous fermentation differ from batch		
	fermentation, and why might BioFerma Ltd. prefer continuous		
	fermentation for enzyme production?		
	C) Explain the role of CRISPR-Cas9 technology in strain		
	improvement.		
	D) What is the significance of using AI tools for real-time		
	monitoring in fermentation processes? Provide two examples		
	of parameters monitored using AI.		
	E) Discuss challenges does scaling up fermentation processes		
	present, and how can these challenges be addressed?		
Q 2	PharmaBio Solutions, a pharmaceutical company, is exploring the	15 marks	CO4
	use of microbial transformation to produce corticosteroids. These	(5 marks	
	steroids are vital for treating various conditions, including	each)	
	inflammation, allergies, and autoimmune disorders. Instead of		
	traditional chemical synthesis, which is expensive and		
	environmentally taxing, the company employs Rhizopus arrhizus to		
	transform plant-derived sterols (e.g., stigmasterol) into		
	hydrocortisone.		

	Based on your understanding of fermentation, answer the following		
	questions:		
	A) What is microbial transformation, and why is it		
	advantageous over chemical synthesis for steroid		
	production?		
	B) Explain the role of <i>Rhizopus arrhizus</i> in the microbial		
	transformation of steroids. What challenges might arise in		
	scaling up microbial transformation processes, and how can		
	they be addressed?		
	C) How can genetic engineering improve the efficiency of		
	microbial transformation in this context? Discuss the		
	environmental and economic benefits of microbial		
	transformation for pharmaceutical production.		
	Section D: Long-Answer Questions		
(2Qx10M=20 Marks)			
Q 1	A) Define primary and secondary metabolites, giving two	5+5 marks	CO3
	examples of each and their industrial significance.		
	B) Compare and contrast feedback repression and feedback		
	inhibition, providing an example for each.		
Q 2	Explain microbial leaching for metal extraction. Discuss the	10 marks	CO5
	mechanism, microorganisms involved, and advantages over		
	traditional methods.		