Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Biosensors and Diagnostics

Semester:5th

Program:B.Tech Biomedical EngineeringDuration: 3 HoursCourse Code:HSBE3002Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Which of the following electrodes are used for measuring	1.5	CO1
	biopotentials like ECG, EMG, and EEG? a) Reference electrodes		
	b) Microelectrodes		
	c) Body-surface recording electrodes		
	d) pH electrodes		
Q 2	Which type of electrode is most suitable for measuring the pO2	1.5	CO2
	level in blood? a) Ion-Selective Field-Effect Transistor (ISFET)		
	b) Blood glucose sensors		
	c) pO2 electrodes		
	d) Microelectrodes		
Q 3	Which electrode is typically used for blood gas monitoring? a)	1.5	CO2
	Microelectrode		
	b) Enzyme electrode		
	c) Reference electrode		
	d) Ion-Selective Field-Effect Transistor (ISFET)		
Q 4	What is the primary function of a reference electrode in	1.5	CO2
	electrochemical measurements? a) To provide a stable potential		
	b) To measure the ion concentration		
	c) To act as a measuring electrode		
	d) To record the voltage across tissues		

Q 5	Polarizable electrodes do not show a potential difference when a	1.5	CO2
	current is passed through them. (True/False)		
Q 6	Microelectrodes are typically used for high precision	1.5	CO3
	measurements in smaller tissue areas. (True/False)		
Q 7	The skin-electrode interface does not contribute to noise or signal	1.5	CO4
	distortion in body-surface recordings. (True/False)		
Q 8	Ion-Selective Field-Effect Transistor (ISFET) electrodes are	1.5	CO3
	commonly used for noninvasive glucose monitoring. (True/False)		
Q 9	Which of the following electrodes is most commonly used for the	1.5	CO4
	measurement of the electrical activity of the brain (EEG)? a)		
	Microelectrode		
	b) Body-surface recording electrode		
	c) Needle electrode		
	d) Reference electrode		
Q 10	Which of the following is the main advantage of using	1.5	CO1
	microelectrodes over conventional electrodes?		
	a) They have higher impedance		
	b) They are suitable for high precision measurements in small		
	tissues		
	c) They require more invasive procedures		
	d) They are less affected by motion artifacts		
Q 11	Repeatability in a sensor refers to:	1.5	CO1
	a) The sensor's ability to detect the smallest input change		
	b) The deviation in repeated measurements of the same object		
	from the same direction		
	c) The upper limit of measurements a sensor can record		
	d) The time taken for the sensor to respond		
Q 12	What does "Reproducibility" in sensor characteristics indicate?	1.5	CO2
	a) Repeatability over long-time lapses between measurements		
	b) The ability to detect a range of inputs accurately		
	c) The smallest detectable change in input		
	d) The ability to calibrate accurately		
Q 13	Define precision in a sensor.	1.5	CO1
Q 14	What type of material is PDMS?	1.5	CO2
	a) Metal alloy		
	b) Ceramic		
	c) Silicone-based elastomer		
	d) Polyethylene derivative		
Q 15	What is the most common way to expose SU-8 to light during	1.5	CO2
	photolithography?		
	a) Using an electron beam		
	b) Using X-rays		
	c) Using UV light through a mask		
	d) Using a laser beam		

Q 16	How do gamma rays differ from alpha and beta particles?	1.5	CO3
	a) They are heavier than alpha and beta particles		
	b) They carry both energy and mass		
	c) They are pure energy without mass		
	d) They are charged particles		
Q 17	Briefly explain why most students had difficulty determining the	1.5	CO2
	flavor of the candy when their noses were closed?		
Q 18	List how many sensors or senses do humans have?	1.5	CO2
Q 19	Give examples of sensors in robots that are similar to at least two	1.5	CO2
	human senses		
Q 20	State different types of taste can your tongue detect.	1.5	CO3
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Discuss the different types of electrodes used in biopotential	5	CO1
	recordings (ECG, EMG, EEG). (2.5 marks)		
	Explain the design, function, and applications of body-surface		
	recording electrodes, and internal electrodes like needle and wire		
	electrodes. (2.5 marks)		
Q 2	What is the significance of the electrode-skin interface in	5	CO3
	biopotential recording systems? (2.5 marks)		
	How does skin impedance affect the quality of the recorded		
	signal? (2.5 marks)		
Q 3	Discuss PDMS pattern formation by micromolding (3 marks) and	5	CO3
	its various attributes. (2 marks).		
Q 4	Discuss physical fiber optic sensor with a suitable example.	5	CO
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Explain the role of electrochemical sensors in monitoring blood	15	CO3
	gas and acid-base physiology. (5 marks)		
	Discuss the principles and applications of pH, pO2, and pCO2		
	electrodes, and how they contribute to patient diagnostics in		
	clinical settings. (10 marks)		
Q2	Describe the principle of proportional counter (with diagram 5	15	CO4
	marks). Discuss basic characteristics of proportional chamber (4		
	marks) Label A, B, C, D, E and F in the below given diagram (6		
	marks):		

	10 ¹² 10 ¹⁰ B C III III III III III III III III II		
	Section D		
Q 1	(2Qx10M=20 Marks) Describe the working principle of an Ion-Selective Field-Effect Transistor (ISFET). (5 marks) How is it used in noninvasive blood-gas monitoring and other biomedical applications? (5 marks)	10	CO2
Q2	Define BioMEMS (2 marks). Discuss various characteristics of BioMEMS (2 marks). Describe the principle of lithography and application of BioMEMS in drug delivery system with example (3+3 marks).	10	CO2