Name:	MIDE C
Enrolment No:	WOI LS
	UNIVERSITY OF TOMORROW

UPES

End Semester Examination December 2024

Course: Novel Drug Delivery System
Program: B. Pharm
Course Code: BP704T

Semester: VII
Duration: 03 Hours
Max. Marks: 75

Instructions: Attempt all questions.

SECTION A

(20 Q x 1 M = 20 Marks)

	(20 Q x 1 M = 20 Marks)				
S. No.	Attempt all questions from section A.	Marks	COs		
Q 1	Controlled drug delivery systems aim to:	1	CO1		
_	a) Achieve immediate drug release				
	b) Control the drug release rate				
	c) Reduce drug side effects only				
	d) Avoid systemic circulation				
Q 2	Differentiate between controlled and sustained release drug delivery system.	1	CO1		
Q3	Mucoadhesion between hydrogels and mucosal membrane includes	1	CO1		
	a) Wetting and swelling				
	b) Interpenetration of the bioadhesive polymer				
	c) Formation of weak chemical bonds				
	d) All the above				
Q 4	kinetics is often preferred in controlled drug delivery systems.	1	CO1		
	a) First-order				
	b) Zero-order				
	c) Second-order				
	d) Burst				
Q 5	Drug permeation across the skin follows:	1	CO2		
	a) Fick's first law of diffusion				
	b) Noyes–Whitney equation				
	c) Higuchi's law of diffusion				
	d) None of the above				
Q 6	Following polymers is commonly used for mucoadhesion in buccal drug	1	CO2		
	delivery?				
	a) Polyvinyl alcohol				
	b) Chitosan				
	c) Polylactic acid				
	d) Polypropylene				
Q 7	Following agent is used to generate a constant positive pressure for zero-	1	CO2		
	order release				
	a) Osmotic agent				
	b) Propellant agent				
	c) Both of the above				
	d) None of the above				

Q 8	Property of polymers that directly affects their ability to control drug release is:	1	CO2
	a) Molecular weight		
	b) Color		
	c) pH level		
	d) Thermal conductivity		
Q 9	Mucoadhesive drug delivery systems can be advantageous because they:	1	CO2
	a) Are absorbed quickly into the bloodstream		
	b) Avoid the first-pass effect		
	c) Do not require frequent dosing		
	d) Only work on highly soluble drugs		
Q 10	One advantage of microencapsulation in drug delivery is:	1	CO2
	a) Faster drug release		
	b) Improved stability of the drug		
	c) Easier administration		
	d) Reduced formulation cost		
Q 11	Osmotic pressure-controlled system provide	1	CO2
	a) Zero order release		
	b) First order release		
	c) Second order release		
	d) None of the above		
Q 12	Mucoadhesive polymers typically contain:	1	CO2
-	a) Hydrophobic groups		
	b) Charged or polar groups		
	c) Metallic groups		
	d) Alkaline buffers		
Q 13	Needle-free Jet Injectors have advantages, EXCEPT	1	CO3
	a) Pain-free delivery		
	b) Accurate dosing		
	c) Improved bioavailability		
	d) Cause infection from splash back of body fluids		
Q 14	A key advantage of implantable drug delivery systems is that they:	1	CO3
	a) Are inexpensive to produce		
	b) Offer a prolonged release period		
	c) Provide immediate effects		
	d) Require daily administration		
Q 15	Gastroretentive drug delivery systems aim to:	1	CO3
	a) Increase drug residence time in the stomach		
	b) Speed up drug transit to the intestines		
	c) Enhance drug solubility in the intestines		
	d) Minimize drug dissolution		
Q 16	Below is commonly used excipient to generate gas in a floating drug delivery	1	CO3
	system is		
	a) Sodium bicarbonate		
	b) Sodium alginate		
	c) Sodium chloride		

	d) Zinc oxide		
Q 17	Enlist any two advantages of nano-particulate drug delivery systems.	1	CO4
Q 18	Alzet is a	1	CO4
	a) Osmotic pressure activated system		
	b) Vapour pressure activated system		
	c) Magnetically activated system		
	d) Hydration activated system		
Q 19	An ion-exchange system releases the drug by:	1	CO4
	a) Diffusion		
	b) Osmosis		
	c) Ionic interactions		
	d) Chemical degradation		
Q 20	The release rate of a drug from an ocusert is influenced by:	1	CO4
	a) Size of the ocusert		
	b) Polymers used in the formulation		
	c) Environmental factors such as eye temperature and tear fluid		
	d) All of the above		
	SECTION B (20 Marks)		
	(2 Q x 10 M = 20 Marks)	37.1	
0.1	Attempt any two questions from section B.	Marks	601
Q 1	a) Write about various advantages of gastro-retentive drug delivery systems.	4+6	CO1
-	b) Explain hydrodynamically balanced systems.	• •	
Q 2	a) What are the advantages of microencapsulation?	2 + 8	CO3
0.2	b) Explain microencapsulation by coacervation phase separation method.	4.6	COA
Q 3	a) Explain thin film hydration method for liposome preparation.	4+6	CO4
	b) Discuss various evaluation parameters of liposomes.		
	SECTION-C (35 Marks)		
	$(7 Q \times 5 M = 30 Marks)$	Maules	T
0.1	Attempt any seven questions from section C.	Marks 5	CO1
Q 1	Classify and explain polymers used in controlled drug delivery with	5	CO1
0.1	examples based on the source and structure.	2.5+2.5	CO1
Q 2	a) Explain the basic principle of transdermal drug delivery systems.	2.5+2.5	COI
Q3	b) Describe their advantages over traditional oral drug administration. Discuss the clinical applications and potential benefits of intrauterine drug	5	CO2
ŲS	delivery systems in reproductive health.	3	CO2
0.4		5	CO2
Q 4	Explain various factors affecting bioadhesion. Describe the main criteria for selecting drug candidates for controlled	5	CO2
Q 5	release.	3	COZ
Q 6	What are ocuserts? Explain various classes of ocuserts.	2+3	CO3
Q 7	Describe the biological factors that affect controlled release formulations.	5	CO3
Q 8	Describe various evaluation parameters for controlled release drug delivery	5	CO4
	systems.		
Q 9	a) Classify niosomes based on nature of lamellarity and vesicle size.	2.5+2.5	CO4
	b) Enlist various formulation approaches for niosomes.		