## Name:

## **Enrolment No:**



## **UPES**

## **End Semester Examination, Dec 2024**

Course: Gene Expression and Transgenics Semester: VII
Program: B.Tech Biotechnology Duration: 3 Hours
Course Code: HSBT4011 Max. Marks: 100

Instructions: Read all questions carefully

| S. No. | Section A                                                      | Marks | COs |
|--------|----------------------------------------------------------------|-------|-----|
|        | Short answer questions/ MCQ/T&F                                |       |     |
|        | (20Qx1.5M= 30 Marks)                                           |       |     |
| Q 1    | Which enzyme adds the 5' cap to the eukaryotic pre-mRNA?       | 1.5   | CO1 |
|        | (A) Poly(A) polymerase (B) Guanylyltransferase                 |       |     |
|        | (C) RNA polymerase (D) Spliceosome                             |       |     |
| Q 2    | The spliceosome, a complex responsible for splicing, is        | 1.5   | CO1 |
|        | primarily made up of which components?                         |       |     |
|        | (A) DNA and proteins (B) tRNA and proteins                     |       |     |
|        | (C) snRNA and proteins (D) rRNA and proteins                   |       |     |
| Q 3    | What happens to the excised introns during splicing?           | 1.5   | CO1 |
|        | (A) They are translated into proteins                          |       |     |
|        | (B) They form lariats and are degraded                         |       |     |
|        | (C) They remain in the cytoplasm                               |       |     |
|        | (D) They are incorporated back into the genome                 |       |     |
| Q 4    | Which RNA modification is critical for mRNA export?            | 1.5   | CO1 |
|        | (A) Polyadenylation (B) 5' capping                             |       |     |
|        | (C) Splicing (D) All of the above                              |       |     |
| Q 5    | Which of the following occurs if mRNA export is impaired?      | 1.5   | CO2 |
|        | (A) Cytoplasmic accumulation of mRNA                           |       |     |
|        | (B) Enhanced translation                                       |       |     |
|        | (C) Nuclear retention of mRNA                                  |       |     |
|        | (D) Increased mRNA stability                                   |       |     |
| Q 6    | What is the primary function of a promoter in gene expression? | 1.5   | CO2 |
|        | (A) To terminate transcription                                 |       |     |
|        | (B) To enhance translation efficiency                          |       |     |
|        | (C) To bind RNA polymerase and initiate transcription          |       |     |
|        | (D) To stabilize mRNA                                          |       |     |
| Q 7    | In the lac operon, what molecule acts as the inducer?          | 1.5   | CO2 |
|        | (A) Glucose (B) Lactose (C) RNA polymerase (D) ATP             |       |     |

| Q 8  | What happens when methyl groups are added to DNA?                                             | 1.5 | CO2 |
|------|-----------------------------------------------------------------------------------------------|-----|-----|
|      | (A) Transcription is usually activated                                                        |     |     |
|      | (B) Transcription is usually repressed                                                        |     |     |
|      | (C) Translation becomes more efficient                                                        |     |     |
|      | (D) RNA degradation is inhibited                                                              |     |     |
| Q 9  | Which of the following is true about enhancer sequences?                                      | 1.5 | CO3 |
|      | (A) They are located only upstream of the gene they regulate                                  |     |     |
|      | (B) They can function at variable distances from the gene                                     |     |     |
|      | (C) They are involved in translation initiation                                               |     |     |
|      | (D) They bind directly to RNA polymerase                                                      |     |     |
| Q 10 | What is the role of a selectable marker in a vector?                                          | 1.5 | CO3 |
|      | (A) To insert the desired DNA sequence                                                        |     |     |
|      | (B) To select cells that have taken up the vector                                             |     |     |
|      | (C) To facilitate transcription of the gene                                                   |     |     |
|      | (D) To inhibit unwanted DNA replication                                                       |     |     |
| Q 11 | In inducible expression systems, the lac operon is often                                      | 1.5 | CO3 |
|      | regulated by which molecule?                                                                  |     |     |
|      | (A) IPTG (B) Glucose (C) X-gal (D) Arabinose                                                  |     |     |
| Q 12 | Which of the following is <b>not</b> a commonly used tag for protein                          | 1.5 | CO3 |
|      | purification in expression systems?                                                           |     |     |
|      | (A) His-tag (B) GST-tag (C) Myc-tag (D) T7-tag                                                |     |     |
| Q 13 | What is the main advantage of using adeno-associated viruses                                  | 1.5 | CO4 |
|      | (AAV) as vectors in gene therapy?                                                             |     |     |
|      | (A) High efficiency in integrating into the host genome                                       |     |     |
|      | (B) Ability to infect a wide range of cell types without causing                              |     |     |
|      | disease                                                                                       |     |     |
|      | (C) Capability to deliver large genetic payloads                                              |     |     |
| Q 14 | (D) Rapid replication in host cells  What is one of the major challenges associated with gene | 1.5 | CO4 |
| Q 14 | therapy?                                                                                      | 1.5 | 004 |
|      | (A) The inability to target specific cells                                                    |     |     |
|      | (B) Potential immune responses to vectors                                                     |     |     |
|      | (C) High cost of genetic engineering                                                          |     |     |
|      | (D) Limited efficacy in laboratory experiments                                                |     |     |
| Q 15 | Which of the following is a potential risk associated with DNA                                | 1.5 | CO4 |
| Q 13 | vaccines?                                                                                     | 1.3 | CO4 |
|      | (A) Integration of the DNA into the host genome                                               |     |     |
|      | (B) Complete failure to produce an immune response                                            |     |     |
|      | (C) Risk of causing the disease being vaccinated against                                      |     |     |
|      | (D) Limited use in humans                                                                     |     |     |
|      |                                                                                               |     |     |
|      |                                                                                               |     |     |

| Q 16 | What is the primary purpose of creating knockout mice?         | 1.5 | CO4  |
|------|----------------------------------------------------------------|-----|------|
|      | (A) To generate animals resistant to infections                |     |      |
|      | (B) To study the function of a specific gene by disabling it   |     |      |
|      | (C) To produce animals with enhanced physical abilities        |     |      |
|      | (D) To increase the lifespan of laboratory animals             |     |      |
| Q 17 | Knockout mice are created by disrupting genes using which of   | 1.5 | CO5  |
|      | the following techniques?                                      |     |      |
|      | (A) RNA interference (B) Site-specific homologous              |     |      |
|      | recombination (C) Protein overexpression (D) Random            |     |      |
|      | mutagenesis                                                    |     |      |
| Q 18 | What is a conditional knockout mouse?                          | 1.5 | CO5  |
|      | (A) A mouse in which a gene is only partially disabled         |     |      |
|      | (B) A mouse in which a gene is deleted in a specific tissue or |     |      |
|      | developmental stage                                            |     |      |
|      | (C) A mouse in which a gene is overexpressed                   |     |      |
|      | (D) A mouse in which all genes are inactivated                 |     | 0.0. |
| Q 19 | What does the term "epigenomics" refer to?                     | 1.5 | CO5  |
|      | (A) Studying variations in gene sequences                      |     |      |
|      | (B) Exploring proteins expressed by a genome                   |     |      |
|      | (C) Examining genome-wide modifications affecting gene         |     |      |
|      | expression without altering DNA sequence                       |     |      |
| 0.20 | (D) Synthesizing artificial DNA sequences                      |     | 00.5 |
| Q 20 | Piwi-interacting RNAs (piRNAs) are primarily involved in:      | 1.5 | CO5  |
|      | (A) Translational repression in somatic cells                  |     |      |
|      | (B) Silencing transposable elements in germ cells              |     |      |
|      | (C) RNA editing in the cytoplasm                               |     |      |
|      | (D) Enhancing ribosome assembly                                |     |      |
|      | Section B                                                      |     |      |
|      | (4Qx5M=20 Marks)                                               |     |      |
|      | (12.2.12 20 12.11.2)                                           |     |      |
| Q 1  | Explain in brief the different levels of gene expression       | 5   | GO1  |
|      | regulation                                                     |     | CO1  |
| Q 2  | Explain metabolic engineering and list its applications.       | 5   | CO2  |
| Q 3  | Explain Genomics & proteomics and their applications           | 5   | CO3  |
| Q 4  | Explain human gene therapy and the methods employed in it      | 5   | CO1  |
|      |                                                                |     |      |
|      |                                                                |     |      |
|      |                                                                |     |      |
|      |                                                                |     |      |
|      |                                                                |     |      |

|     | Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
|     | (2Qx15M=30 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |     |
| Q 1 | A team of researchers intends to develop a transgenic mouse model by introducing the human insulin gene into the genome. This model aims to study the regulation of insulin production and its role in diabetes.                                                                                                                                                                                                                                                                                           | 15 (10+5) | CO2 |
|     | <ul> <li>A. Explain the process of generating transgenic mice and the techniques commonly used to introduce foreign genes. (10 Marks)</li> <li>B. Propose strategies to minimize unintended effects during the development of transgenic models. (5 Marks)</li> </ul>                                                                                                                                                                                                                                      |           |     |
| Q 2 | A research team has developed a synthetic biology-based therapeutic that uses engineered T-cells to treat cancer. The synthetic T-cells are programmed to specifically recognize cancer markers, release anti-tumor agents, and self-destruct after their mission to prevent adverse effects.  A. Explain how would you develop engineered T-cells and the method you employ in detail. (10 Marks)  B. What are the pros and cons of engineered T-cells and how would you avoid adverse effects? (5 Marks) | 15 (10+5) | CO3 |
|     | Section D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | I   |
|     | (2Qx10M=20 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |     |
| Q 1 | Explain the steps of mRNA export in detail with an illustration                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10        | CO4 |
| Q 2 | Explain the process of miRNA-mediated gene regulation with an illustration                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10        | CO5 |