Name:	7//	11:) ;	- (
Enrolment No:	\checkmark	UNIVERS	ITY OF T	TOMORR	=

UPES

End Semester Examination, December 2024

Course: Structural Biology Semester: VIIth
Program: INT-BMSc Microbiology Duration: 3 hours
Course Code: HSMB8009 Max. Marks : 100

Instructions: Carefully read and attempt all the questions.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1.	Identify the server used for determining the extinction coefficient of	1.5	CO1
	protein.		
	A. ProtPapram B. Protscale		
	C. Peptide cutter D. Protein weight		
Q2.	The CHARMM and AMBER force fields are primarily used for:	1.5	CO2
	A. Quantum mechanics calculations		
	B. MD simulations of biological macromolecules		
	C. Statistical analysis of molecular data		
	D. Crystallographic structure determination		
Q3.	Identify the most difficult region in the protein tertiary structure to model-	1.5	CO1
	A. Helices B. sheets		
	C. Side-chains D. loops		
Q4.	All proteins consist of secondary structures. True or False	1.5	CO2
Q5.	PLIP web tool can be used for the analyses of -	1.5	CO1
	A. Protein-protein B. Protein-DNA		
	C. Protein-Ligand D. Protein-RNA		_
Q6.	If the wavelength of the X-ray is greater than the interplanar spacing "d"	1.5	CO1
	then		
	A. Diffraction cannot occur.		
	B. Diffraction occurs at higher angles.		
	C. Diffraction occurs at lower angles.		
Q7.	D. The crystal planes move apart.	1.5	CO1
Q1.	A diffraction peak in an XRD pattern represents A. The number of atoms in the unit cell	1.5	COI
	B. The interplanar spacing of the crystal lattice C. The temperature of the crystal sample		
	D. The speed of the X-ray beam		
Q8.	Databases such as CATH and SCOP are used to identify	1.5	CO1
٠.	A. The structural family to B. The generic family to		"
	which a protein belongs. which a protein belongs.		
	C. homologous proteins D. analogous proteins		
Q9.	A strong negative peak at 222 nm in a CD spectrum indicates:	1.5	CO3

	A A hata ahaat ahuustuus		1
	A. A beta-sheet structure		
	B. An alpha-helical structure		
	C. A random coil structure		
Q10.	D. Protein aggregation	1.5	CO2
Q IU.	In MD simulations, equilibration refers to:	1.5	COZ
	A. The process of setting up the initial coordinates of molecules		
	B. The period during which the system is allowed to reach a steady		
	state C. The production phase of the simulation		
	D. The calculation of the potential energy		
Q11.	Using shorter wavelength light for diffraction results in –	1.5	CO2
Q11.	A. Increased B. No-change in Resolution	1.5	002
	Resolution		
	C. blurred Image D. Decreased Resolution		
Q12.	Identify the secondary protein structure database?	1.5	CO1
Q 12.	A. PDB B. Pubchem	1.5	001
	C. Chembank D. SCOP		
Q13.	Proteins with similar structures but different function may result from	1.5	CO2
Q.10.	A. Codominant B. Dominant evolution		332
	evolution		
	C. Divergent evolution D. Convergent evolution		
Q14.	In Bragg's Law, θ is:	1.5	CO2
-,	A. The angle of reflection		
	B. The angle of incidence between the X-ray and the crystal plane		
	C. The angle between two diffracted beams		
	D. The refractive index		
Q15.	Protons diffract more than the electrons. True or False	1.5	CO2
Q16.	Chemical shift in an NMR spectrum represents	1.5	CO1
-,	A. The interaction of nuclei with unpaired electrons		
	B. The shielding or deshielding of nuclei by surrounding electrons		
	C. The motion of nuclei in a magnetic field		
	D. The nuclear spin relaxation process		
Q17.	A strong negative peak at 222 nm in a CD spectrum indicates:	1.5	CO2
	A. A beta-sheet structure		
	B. An alpha-helical structure		
	C. A random coil structure		
	D. Protein aggregation		
Q18.	Primary sequence of the protein can be determined by?	1.5	CO1
	A. MALDI-TOF MS B. Nextgen sequencing		
	C. Sanger Sequencing D. All the above		
Q19.	Identify the computational method to predict the three-dimensional	1.5	CO1
	structure of the protein.		
	A. X-ray crystallography B. NMR		
	C. Cryo-EM D. Threading		
Q20.	proteins are soluble in water.	1.5	CO1
	Section B		

	(4Qx5M=20 Marks)		
Q1.	Examine the role of protein-protein interactions in cellular processing with suitable example.	5	CO3
Q2.	Compare the differences between energy minimization and equilibration in MD simulations.	5	CO4
Q3.	Compare difference between real space and reciprocal space? Write the vector equation to convert real space into reciprocal space.	5	CO4
Q4.	Describe Synchrotron? List its advantages?	5	CO2
	Section C (2Qx15M=30 Marks)		
Q1.	Illustrate the process of homology modeling. (7) In what conditions should this method be used? (3) Elucidate the differences between the homology modeling and ab initio modeling? (5)	15	CO4
Q2.	Discuss the advantages of 3D NMR over 2D NMR? (10) Explain with an example. (5)	15	CO2
	Section D (2Qx10M=20 Marks)		
Q1.	Explain Force Field? List the parameters included in formulating the Force Field. Give examples of two popular force fields.	10	CO3
Q2.	Classify and explain the types of protein-protein interactions. Propose an in-vitro method to identify protein-protein interactions.	10	CO3